

StaDt#Wien

Dokumentation

Intermodales Verkehrsreferenzsystem Österreich (GIP.at)

Version 2025-06

Inhalt

Ge	nerelle	Information	4
Ve	rsion		4
Liz	enz		4
На	ftungs	ausschluss	4
All	gemeir	ne Empfehlungen	6
1.	Erklä	rungen zum Datenmodell	7
-	1.1.	Struktur GIP	7
	1.1.1	. Subnetze	8
	1.1.2	Abschnitt	8
	1.1.3	Virtuelle Knoten	8
	1.1.4	. Nutzungsstreifen	9
-	1.2.	Digitalisierungsrichtung vs. Fahrtrichtung	10
-	1.3.	Befahrbarkeit	10
-	1.4.	Funktionale Straßenbedeutung (FRC)	12
-	1.5.	Bauliche Ausprägung (FOW)	12
-	1.6.	Anrainerverkehr	12
-	1.7.	Geschwindigkeit	13
-	1.8.	Baustatus	13
-	1.9.	Verortungsobjekte	14
2.	Allge	meine Beschreibung des Datenformats	15
3.	Besc	hreibung des Datensatzes A – Routingexport	17
3	3.1.	Tabelle NODE	19
3	3.2.	Tabellen LINK und LINKCOORDINATE	20
3	3.3.	Tabelle LINKUSE	23
3	3.4.	Tabelle BIKEHIKE	24
3	3.5.	Tabelle TURNEDGE	26
3	3.6.	Tabelle TURNUSE	26
3	3.7.	Tabellen STREETNAMES und LINK2STREETNAMES	27
3	3.8.	Tabelle LINKEDGEROUTE	28
	3.9. JSE2F	Tabelle REFERENCEOBJECT, LINK2REFERENCEOBJECT, REFERENCEOBJECT	32
3	3.10.	Tabelle LINK2BIKEHIKE	34
3	3.11.	Tabelle LinkUseReference	35
3	3.12.	Tabelle DiversionRoute, Link2DiversionRoute	36
4.	Besc	hreibung des Datensatzes B – GIP Network	36
2	4.1.	Geopackage Laver "Edge"	36

	4.2.	Geopackage Layer "Node"	38
	4.3.	Geopackage Layer "Link"	40
	4.4.	Geopackage Layer "LinearUse"	42
	4.5.	Geopackage Layer "TurnUse"	43
	4.6.	Geopackage Layer "Version"	45
5.	Besc	hreibung des Datensatzes C – GIP Reference	46
	5.1.	Geopackage Layer "Brunnel"	46
	5.2.	Geopackage Layer "Bezugspunkte"	46
	5.3.	Geopackage Layer "Bikeroutes"	47
	5.4.	Geopackage Layer "Geoname"	49
	5.5.	Geopackage Layer "Radvis"	49
	5.6.	Geopackage Layer "Max Speed"	50
	5.7.	Geopackage Layer "Version"	50
	6. Be	eschreibung des Datensatzes D – Lookuptabellen	50
	LUT_B	ASETYPE	50
	LUT_B	EPU_OCCURRENCE	51
	LUT_B	EPU_TYPE	51
	LUT_B	IKEMERKMAL	51
	LUT_D	ATABASE	51
	LUT_D	IRECTION	51
	LUT_F	RC	51
	LUT_F	OW	51
	LUT_IN	ITREST_BIT	51
	_	INORTYPE	
	_	INORTYPEREF	
	_	AMECATEGORY	
		ETREFTYPE	
	_	EFERENCETYPE	
	_	EGIONALCODE	
		TATUS	
		TREETCATEGORY	
		UBNET	
		URFACE	
		USTAINER	
	LUT_T	OPOTYPE	52
	LUT U	SECONDITION	52

LUT_	_WALKFEATURE	52
7. Bes	schreibung des Datensatzes E- Localdata	53
7.1.	Geopackage Layer "Radstreckennetz_VBG"	53
7.2.	Geopackage Layer "Version"	54

Generalle Information

Der Datensatz "Intermodales Verkehrsreferenzsystem Österreich (GIP.at)" beinhaltet sämtliche von den GIP-Partnern eingepflegten Verkehrswege, die frei von Rechten Dritter sind.

Anregungen zum Format und generelle Fragen zum Export bitte an:

gip@its-viennaregion.at

Rückmeldungen zu Datenfehlern bitte über den Geoland-Viewer (https://www.geoland.at/webgisviewer/App/PortalApp/geoland?app=Feedback&category=Geoland_Viewer) melden.

Der im Einsatz befindliche Subnetzfilter ist **OGD**.

Version

Der aktuelle Datenstand ist GIP 06-2025. Versionsbeschreibung siehe Änderungshistorie.

Lizenz

Die Daten stehen unter der Lizenz Creative Commons Namensnennung 4.0 International

Die Namensnennung hat in folgender Weise zu erfolgen: "Datenquelle: <u>gip.gv.at</u>" wobei "gip.gv.at" als Link auf <u>www.gip.gv.at</u> auszuführen ist.

Haftungsausschluss

Die GIP-Daten werden mit größter Sorgfalt und Leidenschaft hergestellt und publiziert. Dennoch können Datenfehler in den Ausgangsdaten bzw. in den publizierten Daten nie gänzlich ausgeschlossen werden. Rückmeldungen dazu sind willkommen.

Die GIP-Daten stellen keine Sachverständigeninformation dar. Die Nutzung der GIP-Daten erfolgt auf eigene Verantwortung und eigenes Risiko und erfordert eine Kontrolle des Nutzers. Aus der Verwendung der GIP-Daten ist kein Rechtsanspruch ableitbar. Der GIP-Datenprovider übernimmt keine Haftung für Schäden welcher Art auch immer, insbesondere nicht für entgangenen Gewinn, Folgeschäden und reine Vermögensschäden; dies unbeschadet gegenteiliger zwingender gesetzlicher Haftungsregelungen.

Sämtliche Nutzerinnen und Nutzer teilen sich die GIP.at-Infrastruktur. Es können keine "Exklusivverträge" für eine über dieses Maß hinausgehende Serviceverfügbarkeit abgeschlossen werden.

Allgemeine Empfehlungen

Hinweis zur Aufbau der Doku:

- Die Metadaten werden künftig nicht mehr im Dokument, sondern nur auf data.gv.at bereitgestellt
- Am Beginn steht künftig eine "Änderungshistorie", die die wesentlichen Änderungen seit der letzten GIP Version beschreibt. Dies umfasst sowohl formatbezogene als auch inhaltliche Änderungen. Nur Änderungen, die auf den GIP OGD Export eine Auswirkung haben, sind integriert.

Falls nur einzelne Layer aus den Geopackages "Network" oder "References" benötigt werden, können diese z.B. mit dem Tool ogr2ogr extrahiert werden, indem nach dem Quelldatensatz mit einem Leerzeichen der Layer angegeben wird.

D:\gpkg>ogr2ogr -f "GPKG" nur_noch_bezugspunkte.gpkg gip_reference_ogd.gpkg_

Abbildung 1:Beispiel für Filterung auf einzelnen Layer im Geopackage

Empfehlung: Es wird empfohlen, die Importvorgänge der Export-Datensätze so zu gestalten, dass Formaterweiterungen keine Probleme verursachen. Der Routingexport bietet dafür die Zeilen "atr" und "frm" an, die es ermöglichen, das gewünschte Attribut aus der Record-Zeile zu finden, ohne auf die absolute Position des Attributes zugreifen zu müssen.

Empfehlung: Für Routingzwecke wird empfohlen, den Routingexport und die darin enthaltene Topologie zu verwenden. Zum Beispiel wird daraus erkannt, ob sich zwei Links niveaufremd kreuzen (z.B. mit einer Unterführung) oder ob es einen Knoten gibt (dann muss in der Tabelle NODE ein Datensatz existieren, der in der Tabelle LINK als From/To Node verwendet wird). Auch die erlaubten Abbiegevorgänge zwischen GIP Links sind nur im Routingexport enthalten. (siehe Detailbeschreibung im Kapitel 3 Beschreibung des Datensatzes A – Routingexport)

Empfehlung: Für Zwecke der Referenzierung wird empfohlen, nicht die Link ID zu verwenden, da sich diese auch bei Einmündung von neuen virtuellen Knoten (z.B. niederrangigen Wegen) ändern kann. Wesentlich stabilere IDs des GIP Graphen sind die Abschnitts-Ids, da diese nur bei Abschnitts-Attributänderungen (z.B. des Namens) oder bei Kreuzungen im selben Netz (z.B. Landesstraßen-Kreuzungen) verändert werden. Welchem Abschnitt welcher Link zugeordnet ist, kann der Tabelle LinkEdgeRoute (siehe 3.8 Tabelle LINKEDGEROUTE) entnommen werden. Der GIS Datensatz "EDGE_OGD" im Geopackage GIP Network enthält die GIP Edges als Geometrieobjekte.

Empfehlung: Da auch Subnetze mit Abschnitten, die erst in Bau bzw. gewidmet sind, geliefert werden, wird, wird empfohlen, den Baustatus zu beachten. Nur GIP Links mit Status 5 (aktiv) dürfen im Routing verwendet werden.

Änderungshistorie GIP 25/06 OGD Export

GIP Instanz	Neuerungen	Betroffene Exporte
Allgemein	Eisenbahnkreuzungen im ExportSubnetz 5004 vorhanden	
Wien	Keine grundsätzlichen Veränderungen	
Niederösterreich	Keine grundsätzlichen Veränderungen	
Burgenland	Keine grundsätzlichen Veränderungen	
Steiermark	Keine grundsätzlichen Veränderungen	
Salzburg	• Subnetz 5004 vorhanden	
Kärnten	Keine grundsätzlichen Veränderungen	
Tirol	Keine grundsätzlichen Veränderungen	
Oberösterreich	Keine grundsätzlichen Veränderungen	
Vorarlberg	Keine grundsätzlichen Veränderungen	
ASFINAG	Keine grundsätzlichen Veränderungen	
ÖBB	Keine grundsätzlichen Veränderungen	
ITS Vienna Region	Keine grundsätzlichen Veränderungen	

1. Erklärungen zum Datenmodell

Im Folgenden werden die wichtigsten Eigenschaften zur Datenmodellierung in der GIP zusammengefasst. Einen umfassenden Überblick bietet der "GIP Standard 2.3.4". Dieses Dokument ist unter www.gip.gv.at#ogd ("GIP Datenstandard") veröffentlicht und kann somit für detailliertere Fragen herangezogen werden.

Falls weitergehende Fragen auftreten, bitte an gip@its-viennaregion.at wenden.

1.1. Struktur GIP

Die Graphenintegrations-Plattform Österreich (GIP.at) besteht aus mehreren Datenbanken, die dezentral vom jeweiligen GIP-Partner (u.a. die Bundesländer, ASFINAG, ÖBB) gewartet, regelmäßig miteinander synchronisiert und alle 2 Monate vom GIP-Österreich-Betreiber in

einer zentralen Datenbank zu einem österreichweiten, einheitlichen Graphen zusammengeführt werden.

Aus dieser als GIPAT bzw. in der hier verwendeten Instanz als GIPOGD bezeichneten Datenbank werden alle 2 Monate die verschiedenen GIP Exportkanäle aktualisiert, darunter fällt auch der hier beschriebene OGD Export.

1.1.1. Subnetze

Innerhalb einer Landes-GIP erfolgt eine weitere Untergliederung des Verkehrsnetzes in "Subnetze", die von der organisatorischen Struktur des GIP Partners abhängen. So gibt es pro Landes-GIP zumeist ein Subnetz für Landesstraßen, eines für Gemeindestraßen und diverse andere Subnetze (niederrangiges Wegenetz, ÖV-Subnetze…). Eine detaillierte Auflistung aller verfügbaren Subnetze findet sich in der Lookup-Tabelle LUT_SUBNET.

1.1.2. Abschnitt

Das Basisobjekt der GIP ist der Abschnitt, der die Mittelachse des Verkehrsweges repräsentiert. Er ist ein lineares Netzelement und hat immer einen Von-Knoten und einen Nach-Knoten. Diese Knoten können Kreuzungen sein, müssen sie aber nicht. Knoten kann es etwa auch bei der Änderung von Abschnittsattributen, etwa des Straßennamens, geben. Subnetze bestehen aus einer Gruppierung der Abschnitte.

1.1.3. Virtuelle Knoten

Wenn ein Abschnitt eines niederrangigen Subnetzes in den Abschnitt eines höherrangigen Subnetzes einmündet, wird dort kein echter Knoten, sondern ein "virtueller" Knoten erzeugt. Das bedeutet, der höherrangige Abschnitt wird nicht aufgesplittet, sondern der niederrangige Abschnitt verweist über einen Prozentwert auf den höherrangigen (= seine Basiskante).

Für den Routing Export werden die virtuellen Knoten (ausgenommen weniger Sonderfälle bei ÖV-Netzen) aufgelöst und in echte Knoten umgewandelt. Die somit neu entstehenden linearen Netzelemente werden als "Links" bezeichnet und bilden einen routingfähigen Graphen. Wenn in einer Gemeinde 15 Wege in einen Landesstraßenabschnitt einmünden, besteht dieser dann aus 17 Links.

Knoten, an denen zwar das Linknetz geteilt ist, aber das Abschnittsnetz nicht, sind "Linkknoten". Diese spielen in der GIP keine Rolle, im GIP Export aber sehr wohl.

Beispiel: Die Unterscheidung in Knoten und virtuelle Knoten soll anhand dieser Abbildung beschrieben werden. Während Abschnitte eines Subnetzes an Kreuzungen immer aufgesplittet werden (Kreis), wird bei einer Kreuzung mit einem niederrangigen Subnetz ein virtueller Knoten (Quadrat) erzeugt.

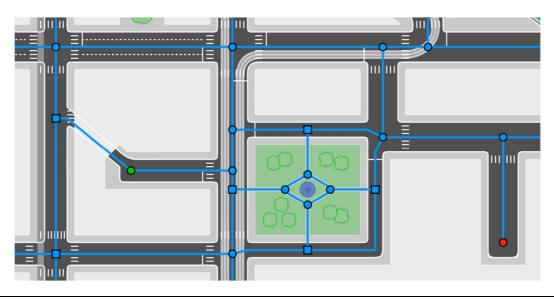


Abbildung 2: Abschnittsnetz mit virtuellen und echten Knoten

1.1.4. Nutzungsstreifen

Die Querschnittselemente (Gehweg, Fahrbahn, Radweg, ...) werden nicht als eigene Abschnitte digitalisiert, sondern als "Nutzungsstreifen" dem Abschnitt zugeordnet. Diese haben eine definierte Quer- und Längslage, können also auch nur Teile eines Abschnittes abdecken (etwa wenn ein Mehrzweckstreifen abseits der Kreuzung oder ein Gehsteig, der auf einer Straßenseite endet).

Die Geometrie der Nutzungsstreifen liegt in der Tabelle LinkUse des Routing Exports (nicht direkt, aber implizit über die Geometrie des Links sowie Offset und Breite des LinkUses).

Beispiel: Schematische Darstellung von Nutzungsstreifen, die im Kreuzungsbereich ausgesetzt sind.

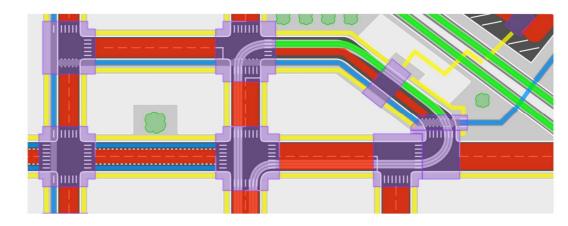


Abbildung 3:Nutzungsstreifen

An Knoten gibt es einerseits aggregierte Abbiegebeziehungen zwischen Links (die sogenannten "TurnEdges"), andererseits auch die genaueren Abbiegebeziehungen zwischen den Nutzungsstreifen (die "TurnUses"). Es werden bei beiden Arten von Abbiegebeziehungen immer die erlaubten (nicht die verbotenen) Relationen angegeben. D.h.

wenn in der Tabelle kein Eintrag für das Abbiegen von Link X nach Link Y definiert ist, impliziert dies ein Abbiegeverbot für alle Verkehrsmittel von Link X nach Link Y.

Beispiel: Schematische Darstellung der Befahrbarkeit (orange) und Abbiegebeziehungen (grün) für Straßenbahnen.

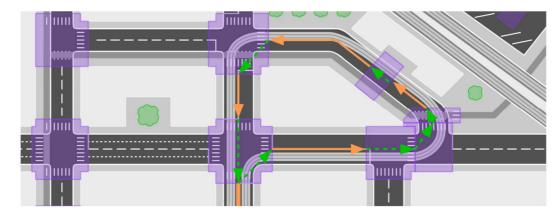


Abbildung 4: Abbiegebeziehungen

1.2. Digitalisierungsrichtung vs. Fahrtrichtung

Die Richtung, in die ein Link digitalisiert ist, lässt keine Rückschlüsse auf die Richtung der Befahrbarkeit zu. Die Richtung in die ein Link befahren oder begangen werden darf, ist alleine durch die Erlaubnis des jeweiligen Verkehrsmodus definiert. Es gibt für einen beidseitig befahrbaren Link nur eine Geometrie.

1.3. Befahrbarkeit

Allgemeine Erklärung der Bitmaske zur Befahrbarkeit

Die Befahrbarkeiten auf Links, Nutzungsstreifen und Abbiegerelationen werden im INTREST Export mit einer Bitmaske modelliert. Relevant (d.h. bereits mit Daten versorgt) sind die Bits 0-7 (Nummerierung gemäß LSB-0-Nummerierung). Die Bits ab Stelle 8 werden zwar teilweise schon anhand automatisierter Regeln gesetzt, werden aber in der GIP (noch) nicht gewartet und sind daher nicht relevant. Ausgenommen sind die inzwischen in Wien vollständig erfassten Taxi-Befahrbarkeiten.

Die INTREST Befahrbarkeits-Bits sind wie folgt definiert:

Die Befahrbarkeiten auf Links, Nutzungsstreifen und Abbiegerelationen werden im INTREST Export mit einer Bitmaske modelliert. Relevant (d.h. bereits mit Daten versorgt) sind die Bits 0-7 (Nummerierung gemäß LSB-0-Nummerierung).

Die LKW Bits (8,9,11) werden in den nächsten Versionen befüllt werden. Vorläufig sind sie noch nicht korrekt befüllt. Wenn es soweit ist, wird das in der Änderungshistorie und der Datensatzbeschreibung bekannt gegeben.

Die Bits ab Stelle 12 werden zwar teilweise schon anhand automatisierter Regeln gesetzt, werden aber in der GIP (noch) nicht gewartet und sind daher nicht relevant.

Die INTREST Befahrbarkeits-Bits sind wie folgt definiert:

ID Bit	Name Bit	Wert (dezimal)	Kommentar
0	Pedestrian	1	Fußgänger
1	Bike	2	Radfahrer
2	Private Car	4	PKW
3	Public Bus	8	Bus (Linienbus, Basis für ÖV-Bus-Routing)
4	Railway	16	Eisenbahn (umfasst Seilbahn und Zahnradbahn)
5	Tram	32	Straßenbahn
6	Subway	64	U-Bahn
7	Ferry Boat	128	Fähre, Schifffahrt
8	Truck3500	<mark>256</mark>	LKW 3,5-7,5 Tonnen (noch nicht befüllt)
9	Truck7500	<mark>512</mark>	LKW 7,5-16 Tonnen (noch nicht befüllt)
10	Taxi	1024	Taxi
11	Truck16000	<mark>2048</mark>	LKW >16 Tonnen (noch nicht befüllt)
12	Motor Coach	4096	Bus (Reisebus)
13	Trolly Bus	8192	O-Bus
14	Motorcycle	16384	Motorrad
15	Rack Railway	32768	Zahnradbahn
16	Cable Railway	65536	Seilbahn
17	Car Ferry	131072	Fähre mit PKW Transport
18	Camper	262144	Campingwagen, Kleinbus
19	Combustibles	524288	Feuergefährliche Güter
20	Hazardous to Water	1048576	Wassergefährdende Güter
21	Garbage Collection Vehicle	2097152	Müllfahrzeug

Beispiele:

Die Befahrbarkeit in Link-Richtung mit dem Wert 13 entspricht den folgenden Bits: 1 (2^0) + 4 (2^2) + 8 (2^3), also den Bits 0, 2 und 3. Die Befahrbarkeit ist somit für Fußgänger, PKW und Bus in Linkrichtung gegeben. Nicht für Radfahrer oder U-Bahn.

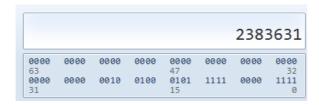


Abbildung 5: Aufschlüsselung Bitmaske mit Windowsrechner

Der dezimale Wert 2383631 hat binär die Aussage: Die Bits 0-3 sind gesetzt, also sind Fußgänger, Radfahrer, PKW und Bus erlaubt, die Bits 4-7 sind nicht gesetzt das bedeutet, dass Eisenbahn, Straßenbahn, U-Bahn und Schiffsverkehr nicht fahren dürfen.

Die Bits ab Stelle 8 werden zwar anhand automatisierter Regeln gesetzt, werden aber in der GIP nicht gewartet und sind daher nicht relevant. Ausgenommen sind die inzwischen in Wien vollständig erfassten Taxi-Befahrbarkeiten.

Unterscheidung Nutzungsstreifen-Link

Bei Nutzungsstreifen ist die Bitmaske dieselbe wie in ACCESS_TOW der Tabelle LINK, allerdings sind die Befahrbarkeiten am Link aggregiert. Wenn einer von 4 Nutzungsstreifen am Link die Fußgängererlaubnis "in Richtung" enthält, steht in ACCESS_TOW der Tabelle Link das Fußgänger Bit "erlaubt". Auf den 3 Nutzungsstreifen, die nicht für Fußgänger erlaubt sind (etwa Fahrbahn, Radweg, Schienenweg…) steht hier in USE_ACCESS_TOW der Tabelle LINKUSE aber keine Fußgängererlaubnis.

1.4. Funktionale Straßenbedeutung (FRC)

Die Verkehrsbedeutung FRC (Functional Road Class) definiert die verkehrliche Bedeutung aus planerischer und netzlogischer Sicht. Die Verkehrsbedeutung wird als zentrales Merkmal für Navigationsangaben und für Zwecke des Verkehrsmanagements verwendet.

Die Straßen mit FRC 0 bis 4 definieren das Durchfahrtsnetz. Für den MIV sollte, außer im Nahbereich von Start- und Zielpunkt, vorrangig das Durchfahrtsnetz für das Routing verwendet werden.

Bei der Modellierung wird darauf geachtet, dass die FRCs 0-8 aufeinander aufbauen und ein lückenloses und vollständiges Netz bilden.

Die Wertedomänen sind der LUT_FRC, die inhaltliche Beschreibung ist dem GIP Standard 2.3.4 zu entnehmen.

1.5. Bauliche Ausprägung (FOW)

Die bauliche Struktur (FOW) beschreibt die physische Ausprägung eines Abschnittes. Als Verzeichnis der verfügbaren Wertedomänen dient die LUT_FOW. Die inhaltliche Beschreibung ist dem GIP Standard 2.3.4 zu entnehmen.

1.6. Anrainerverkehr

Beschränkungen für Anrainer werden wie folgt modelliert bzw. im Export gekennzeichnet. Für <u>PKW</u> existiert das Attribut ABUTTERCAR in der Link-Tabelle. Es ist mit 1 befüllt, wenn

der PKW-Verkehr zwar erlaubt ist, allerdings nur mit Einschränkungen (z.B. nur für Anrainer oder Berechtigte).

Grundsätzlich sollten solche Wege nur verwendet werden, wenn kein anderer Weg zum Start oder Ziel führt, aber nicht im Routing für Abkürzungen etc. Beispiele sind Wohnstraßen (keine Durchfahrt laut STVO!), innerbetriebliche Wege, Wirtschaftswege, Anrainerstraßen oder Forstwege.

Für <u>Fußgänger</u> existiert in der Tabelle BIKEHIKE das Walkfeature NR (no routing/nicht routen), um die Information zu transportieren, dass der Nutzungsstreifen zwar grundsätzlich begehbar ist, aber nur eingeschränkt. Darunter fallen z.B. Kleingärten in Wien oder Fußwege, die nur für Anrainer begehbar sind (ggf. versperrt), Privatwege etc.

Ab GIP 06/21 existiert das äquivalente Attribut auch für <u>Radverkehr</u>, indem in der Tabelle BIKEHIKE das Bikefeature ABBK integriert wird. Dieses Attribut wird zukünftig befüllt werden, wenn auch Radfahrer auf dem Nutzungsstreifen nur zu/abfahren, aber nicht durchfahren dürfen.

Beispiele: So bedeutet etwa "Fahrverbot ausgenommen Anrainer", dass auch der Radverkehr NICHT durchfahren darf, es sei denn als Anrainer (→ ABBK); Hingegen bedeutet "Fahrverbot ausgenommen Anrainer und Radfahrer", dass der Radverkehr die PKW-Anrainerstraße durchfahren darf (würde im Bikefeature VK BE oder RVW resultieren).

1.7. Geschwindigkeit

Es wird zwischen zwei Geschwindigkeitswerten unterschieden: Der Höchstgeschwindigkeit laut StVO und der "Durchschnittsgeschwindigkeit", welche plausiblere Werte für Reisezeitberechnungen, Routing etc. enthält.

Für alle Geschwindigkeitswerte gilt: -1 = nicht zutreffend, etwa auf Fußwegen.

Die inhaltliche Beschreibung ist dem GIP Standard 2.3 zu entnehmen.

In der GIP werden nicht nur aktive Abschnitte verwaltet, sondern auch Abschnitte in einem anderen Status. Für das Routing dürfen natürlich nur aktive Abschnitte verwendet werden, sodass die Berücksichtigung des Baustatus essentiell ist. Die folgenden Werte sind im Baustatus möglich.

1.8. Baustatus

Status	Kommentar
0	Unbekannt
1	Fiktiv - Wird z.B. für fiktive Linien, die zu Kilometrierungs- oder Namensgutzwecken nötig sind, verwendet, oder für abgetragene Bahnlinien, die weiter in der GIP benötigt werden
2	In Bau - Wird für Abschnitte verwendet, die bereits in Bau sind.
3	In Planung - Wird für Planungsvarianten von Abschnitten verwendet
4	Gewidmet - Wird für gewidmete Abschnitte verwendet

1.9. Verortungsobjekte

Der GIP Export enthält Verortungsobjekte.

Ein Verortungsobjekt stellt eine Referenz von Fachdaten (z.B. Kunstbauwerken, Fernziele oder Radrouten) auf das GIP Netz dar.

Verortungsobjekte selbst enthalten grundsätzlich nur wenige Attribute (minimal eine ID und einen Referenztyp), müssen aber immer eine Netzreferenz beinhalten. Die Netzreferenz kann auf der Link-Ebene oder auf der Linkuse/Turnuse-Ebene erfolgen und je nach Referenztyp auch geordnet oder gerichtet sein.

Im GIP Export gelten folgende Grundsätze:

- Die Objekte selbst sind im Routingexport in der Tabelle ReferenceObject enthalten.
- Ihre Netzreferenzen sind ebenfalls im Routingexport enthalten, wobei
 - o eine Tabelle für linkgenaue Referenzen (für alle Verortungsobjekte)
 - und eine zweite für spezielle querschnittsgenaue Referenzen (derzeit nur für Radrouten in Wien, Niederösterreich, Steiermark, Kärnten, Burgenland), welche die Abfolge von LINEARUSES und TURNUSES enthält existieren.
- Für spezielle Verortungsobjekte (initial: Brücken und Tunnel) bestehen Fachdatensätze, die zusätzliche Attribute beinhalten. (Bsp. Brunnel: Bereinigter Name, Level)

Übersicht Verortungsobjekte im Export:

	GIS	IDF File
Brunnel	Alle außer Oberösterreich	Alle außer Oberösterreich
Radrouten	In allen Bundesländern	In allen Bundesländern
Nah- und Fernziele		In allen Bundesländern

2. Allgemeine Beschreibung des Datenformats

Die Lieferung des OGD Exportes wird ab Juni 2019 in einem neuen, erweiterten Format durchgeführt. Dabei werden die alten Datensätze noch ein halbes Jahr mitgeliefert.

Die Erweiterung ergibt sich einerseits aus neuen Anforderungen, die an die GIP Export gestellt werden, andererseits aus technologischen Gründen, da Shapefiles nur 2 GB groß sein können und diese Größe mit den GIP Exporten allmählich erreicht wird.

Es umfasst ab GIP Dezember 2022 die folgenden Datensatzpakete

- A Routingexport
 - o ein IDF Gesamtfile
 - o ZIP Archiv mit den einzelnen IDF Tabellen aufgesplittet
- B GIP Network = Basisnetz
 - Abschnitte
 - Knoten
 - o Links
 - Nutzungsstreifen
 - Abbiegerelationen
- C GeopackageGIP Reference = Objekte des Exports, die auf das GIP Basisnetz referenzieren
 - Layer "Brunnel"
 - o Layer "Bezugspunkte
 - Layer "Bikeroutes"
 - o Layer "Geoname"
 - Layer "Max Speed" (neu ab GIP 6/24)
- D Lookuptabellen
- E Localdata
 - Layer "Radstreckennetz VBG"

Beispiele für Inhalte der Exportdatensätze:

Inhalt	Datensatz
Routingfähiges topologisches Linknetz mit aggregierten Attributen für intermodales Routing z.B. mit Befahrbarkeit, Geschwindigkeit oder funktionaler Klassifizierung	A Routingexport (Tabellen Node und Link bzw. Geometrie in LinkCoordinate)
Abbiegeerlaubnisse auf Straßenmittelachsen - Ebene oder Straßenquerschnittsebene	A Routingexport (Tabelle TURNEDGE bzw. TURNUSE)

Aggregierte Nutzungsstreifendaten als Zusatzattribute zur Straße für Routing-Kostenfunktionen, z.B. um Straßen mit Radwegen für Radrouting oder Straßen mit breiten Fahrbahnen für LKW Routing höher zu bewerten	A Routingexport (Tabellen LINKUSE und BIKEHIKE)
Straßennamen mit Linkzuordnung als Basis für eine Routing-Wegbeschreibung	A Routingexport (Tabellen STREETNAMES und LINK2STREETNAMES)
Verortungsobjekte mit Linknetzreferenzen als Basis für Routinginformationen und Wegbeschreibung, z.B. Nah/Fernziele, Brunnel oder Radrouteninformationen	A Routingexport (Tabellen REFERENCEOBJECT und LINK2REFERENCEOBJECT)
Informationen zum Straßenverlauf über Links hinweg z.B. für vereinfachte Wegbeschreibungen oder Stationierungen	A Routingexport (Tabelle LINKEDGEROUTE)
Einfach verständliche routingfähige lineare Geometrie des Linknetzes mit aggregierten Attributen z.B. für Karten oder Netzanalysen	B Network (Layer GIP_LINKNETZ_OGD)
Einfach verständliche - nicht routingfähige - lineare Geometrie der GIP Abschnitte mit stabilen Ids und Versionierung z.B. für die Referenzierung von Fachdaten auf Abschnittsebene	B Network (Layer EDGE_OGD)
Punktdatensatz der GIP Knoten mit stabilen Ids und Versionierung z.B. für die Verortung auf Kreuzungen	B Network (Layer NODE_OGD)
Liniengeometrien der Nutzungsstreifen und Abbiegerelationen z.B. für Anwendungen im NMIV Bereich oder Referenzierung von Fachdaten auf der Straßenquerschnittsebene	B Network (Layer LINEARUSE_OGD und TURNUSE_OGD)
Bezugspunkte als punktförmige Geometrien mit Kilometerinformation z.B. für Verortung auf Basis von Straßen-KM	C References (Layer BEPU_OGD)
Radrouten als lineare Geometrien mit Fachdaten	C References (Layer BIKEROUTES_OGD)
Bahnhofsnamen als Punktdatensatz	C References (Layer GEONAMES_OGD)
Brücken und Tunnel bzw. andere Kunstbauwerke als lineare Geometrien mit Fachdaten	C References (Layer BRUNNEL_EXPORT_OGD_L)
Verzeichnis der Wertedomänen	D Lookuptabellen

3. Beschreibung des Datensatzes A – Routingexport

Der Routing Export enthält die routingrelevanten Informationen in einem stark an das INTREST Data Format (IDF) angelehnten Format.

Dieser Export enthält mehrere CSV-Tabellen in einem Textfile zusammengefasst. Weiters werden die einzelnen Tabellen in einem eigenen zip Archiv geliefert.

Das Format ist wie folgt zu interpretieren:

Zu Beginn steht der INTREST Header, der allgemeine Informationen zum Export enthält. Das Feld dbn enthält die Version.

Danach folgt die Sektion mit den Daten. Darin ist der Inhalt jeder Zeile durch Semikolons getrennt. An erster Stelle steht die Kennzeichnun für die weiteren Inhalte der Zelle. Folgende Kennzeichnungen sind relevant:

- tbl: Markiert den Beginn einer Tabelle. Nach dem Semikolon folgt der Tabellenname.
- atr: Enthält die Spaltenüberschriften der folgenden Tabelle.
- frm: Enthält das Format der jeweiligen Spalte der Tabelle.
- num: Gibt die Anzahl der nun folgenden Datensätze der Tabelle an.
- rec: Diese Zeile enthält einen Datensatz.
- end: Abschluss der Tabelle. Nach dem Semikolon steht die Anzahl der zuvor enthaltenen Datensätze der Tabelle (sollte mit dem Wert "num" und der Anzahl der "rec"-Zeilen ident sein).

Beispiel:

tbl;Node

atr;NODE_ID;LEVEL;VIRTUAL_TYPE;X;Y;VIRT_LINKID;VIRT_PERCENT;BIKE_DELAY;ST ATUS;NODE_OBJECTID;VIRT_LINK_OBJECTID

frm;decimal(10);decimal(3,1);decimal(1);decimal(9,7);decimal(9,7);decimal(10);decimal(7,4); decimal(3);string(1);decimal(20);decimal(20)

num;2

rec;10347591;0.0;0;16.3253032;48.2079073;-1;-1.0000;-1;"U";10347591;-1

rec;10347722;0.0;0;16.3286169;48.2087490;-1;-1.0000;-1;"U";10347722;-1

end:2

Interpretation

tbl;Node → Jetzt beginnt die Tabelle Node

atr; → Die Spalten der Tabelle Node

frm; → Das Format der einzelnen Spalten

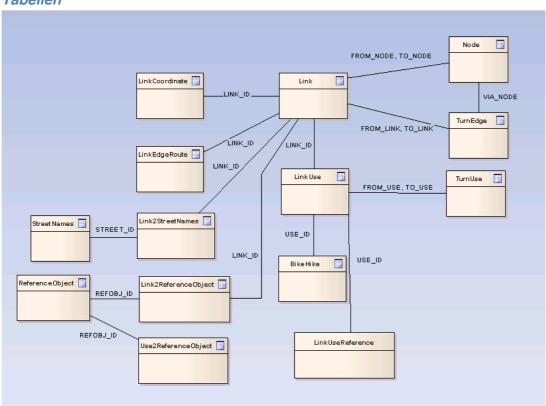
num;2 → 2 Datensätze werden folgen

Es folgen die beiden Datensätze

End;2 → Ende der Tabelle Node

Dann folgt die nächste Tabelle.

Datentypen


Folgende Datentypen sind in der Schnittstelle vorgesehen:

- Text: Wird immer von doppelten Anführungsstrichen ("") begrenzt, unbekannt und leer wird mit "" gekennzeichnet. In den Anführungsstrichen sind druckbare Zeichen erlaubt, auch wieder das Semikolon ";". Ein Anführungszeichen innerhalb des Textes muss als doppeltes Anführungszeichen angegeben werden ("").
- Zahl: Es gibt keine Fließkommazahlen. Fix definierte Nachkommastellen darf es geben und werden grundsätzlich durch Punkt (.) getrennt; Bei Aufzählungstypen gibt es einen ausdrücklichen Wert für undefiniert, in der Regel beträgt dieser -1.

Die Koordinaten liegen in geografischen Koordinaten in der Projektion WGS84 vor. Sie werden mit 7-stelliger Genauigkeit angegeben.

Die Tabellen werden in weiterer Folge beschrieben. Attribute, die derzeit nicht verwendet werden, sind rot hinterlegt. Primärschlüssel sind mit PK markiert.

Der OGD Export enthält sowohl ein Gesamt-File als auch die Einzeltabellen.

Tabellen

Abbildung 6: Tabellen IDF Export

3.1. Tabelle NODE

Die Tabelle NODE enthält die Knoten des GIP Netzes und folgende Attribute.

Spaltenname	Format	Beschreibung des Attributes
NODE_ID (PK)	decimal(10)	Knoten ID, im Vergleich zur GIP-Node-ID modulo 1 Mrd. gerechnet
INTREST_LEVEL	decimal(3,1)	Logische Höhe des Knotens (befüllt ab GIP 6/23)
VIRTUAL_TYPE	decimal(1)	Kennzeichnet, ob der Knoten ein virtueller Knoten ist (1) oder nicht (0). Bei virtuellen Knoten muss auch VIRT_LINKID und VIRT_PERCENT ausgefüllt sein.
Χ	decimal(9,7)	X-Koordinate in WGS84
Υ	decimal(9,7)	Y-Koordinate in WGS84
Z	decimal(10,2)	Höhenangabe des Knotens, nur für Österreich verfügbar. Basiert auf dem Höhenmodell Österreich von data.gv.at (Geoland, 2015)
VIRT_LINKID	decimal(10)	Bei echten Knoten ist das Attribut immer mit -1 befüllt. Bei virtuellen Knoten wird die Link ID der Basiskante, in die der Link an der Stelle VIRT_PERCENT einmündet, angegeben. Betrifft nur wenige Sonderfälle.
VIDT DEDCENT	decimal(7,4)	Für normale Knoten –1.0000, für virtuelle Knoten die Stationierung, d.h. die Position des virtuellen Knotens auf dem Basislink.
VIRT_PERCENT		Für die Zukunft ist geplant, die verbleibenden virtuellen Knoten im Export ebenfalls aufzubrechen, sodass das Attribut künftig obsolet wird.
BIKE_DELAY	decimal(3)	Ampelwartezeit für Fahrrad in Sekunden. Wird nicht verwendet.
STATUS	string(1)	Immer "U", nicht verwendet.
NODE_OBJECTID	decimal(20)	NODE_ID 1:1 aus der GIP
VIRT_LINK_OBJECTID	decimal(20)	VIRT_LINKID 1:1 aus der GIP

Es ist nicht möglich, dass ein Knoten ohne zugehörigen Link existiert. Dies wird durch entsprechende Prüfungen des GIP-Betriebes sichergestellt. D.h. jeder Knoten muss zumindest einem Link als From- oder To-Node zugeordnet sein.

3.2. Tabellen LINK und LINKCOORDINATE

Die Tabelle LINK enthält die Kanten des GIP Netzes und folgende Attribute.

Spaltenname	Format	Erklärung
LINK_ID (PK)	decimal(10)	Link-ID (GIP Link ID modulo 1 Mrd.)
NAME1	string (254)	Name des Links, enthält grundsätzlich den Nametext des Hauptnamens.
NAME2	string (254)	Es werden alle zusätzlichen Namen durch Schrägstrich getrennt übergeben (z.B.: B17/Floridsdorfer Brücke).
FROM_NODE	decimal(10)	Knoten-ID des Startknotens der Kante (GIP Node ID modulo 1 Mrd.)
TO_NODE	decimal(10)	Knoten-ID des Endknotens der Kante (GIP Node ID modulo 1 Mrd.)
SPEED_TOW_CAR	decimal(3)	Durchschnittliche Geschwindigkeit für Autos in Fahrtrichtung des Links. (in km/h) Wenn in der GIP keine Geschwindigkeit aufgetragen ist, aber MIV fahren darf, wird 3 km/h exportiert. Wenn kein MIV erlaubt ist, -1. Auf Schienenstrecken wird die Trassierungsgeschwindigkeit gemäß GIP Standard verwendet. Heißt im zugehörigen GIS Datensatz SPEEDCAR_T
SPEED_BKW_CAR	decimal(3)	Durchschnittliche Geschwindigkeit für Autos gegen Fahrtrichtung des Links. (in km/h) Wenn in der GIP keine Geschwindigkeit aufgetragen ist, aber MIV fahren darf, wird 3 km/h exportiert. Wenn kein MIV erlaubt ist, -1. Auf Schienenstrecken wird die Trassierungsgeschwindigkeit gemäß GIP Standard verwendet. Heißt im zugehörigen GIS Datensatz SPEEDCAR_B
SPEED_TOW_TRUCK	decimal(3)	Durchschnittliche Geschwindigkeit für LKWs in Hinrichtung (km/h).
SPEED_BKW_TRUCK	decimal(3)	Durchschnittliche Geschwindigkeit für LKWs in Rückrichtung (km/h).

MAXSPEED_TOW_CAR	decimal(3)	Maximale Geschwindigkeit für Autos in Hinrichtung (km/h). Im Standard-Export aus Usecondition Typ 3 befüllt. Heißt im zugehörigen GIS Datensatz VMAX_CAR_T
MAXSPEED_BKW_CAR	decimal(3)	Maximale Geschwindigkeit für PKW in Rückrichtung (km/h). Heißt im zugehörigen GIS Datensatz VMAX_CAR_B
MAXSPEED_TOW_TRUCK	decimal(3)	Maximale Geschwindigkeit für LKWs in Hinrichtung (km/h).
MAXSPEED_BKW_TRUCK	decimal(3)	Maximale Geschwindigkeit für LKWs in Rückrichtung (km/h).
ACCESS_TOW	decimal(8)	Benützung in Hinrichtung für sämtliche Verkehrsmittel. (Erklärung siehe Kapitel Befahrbarkeit)
ACCESS_BKW	decimal(8)	Benützung in Rückrichtung für sämtliche Verkehrsmittel. (Erklärung siehe Kapitel Befahrbarkeit)
		Länge der Kante in Metern.
LENGTH	decimal(8,2)	Bitte um Beachtung, dass projektionsbedingte Ungenauigkeiten bis zu 0,5% auftreten können.
FUNCROADCLASS	decimal(3)	Verkehrliche Bedeutung (Wertedomäne laut Tabelle LUT_FRC) Heißt im zugehörigen GIS Datensatz FRC
CAP_TOW	decimal(5)	Kapazität in Hinrichtung
CAP_BKW	decimal(5)	Kapazität in Rückrichtung
LANES_TOW	decimal(2,1)	Spurenanzahl in Hinrichtung, gemeint sind Spuren für den MIV Fließverkehr, -1 bedeutet unbekannt.
LANES_BKW	decimal(2,1)	Spurenanzahl in Rückrichtung gemeint sind Spuren für den MIV Fließverkehr, -1 bedeutet unbekannt.
FORMOFWAY	decimal(3)	Bauliche Struktur des Links, Wertedomäne laut Tabelle LUT_FOW
BRUNNEL	decimal(1)	Wird nicht verwendet
MAXHEIGHT	decimal(4,1)	Höhenbeschränkung
MAXWIDTH	decimal(4,1)	Breitenbeschränkung
MAXPRESSURE	decimal(4,1)	Tonnagebeschränkung Heißt im zugehörigen GIS Datensatz MAXPRESS
ABUTTER_CAR	decimal(1)	Anrainerstraße, siehe Beschreibung. 1 wenn Anrainerstraße, sonst -1. Heißt im zugehörigen GIS Datensatz ABUTTERCAR

ABUTTER_LORRY	decimal(1)	Anrainerstraße, siehe Beschreibung. 1 wenn LKW nur Zufahrt/Abfahrt erlaubt, sonst -1
U_TURN	decimal(1)	Möglichkeit für PKW auf der Kante eine Kehrtwende zu machen, wird nicht verwendet
SLOPE	decimal(3,1)	Steigung der Kante in Erfassungsrichtung in Prozent, wird nicht verwendet
URBAN	decimal(1)	1 wenn Link im bebauten Gebiet liegt; sonst -1
WIDTH	decimal(4,1)	Breite des Links (Meter)
LEVEL	decimal(3,1)	Höhenangabe der Kante in Bezug auf die Erdoberfläche (=0). Es ist eine Nachkommastelle möglich, um Zwischen- und Halbgeschosse in Bauwerken abbilden zu können. Die Kante kann so einen abweichenden Level von den Knoten erhalten. Für Auswertungen wird der Brunnel-Datensatz empfohlen.
BAUSTATUS	decimal (3)	Baustatus, Wertedomäne laut Tabelle LUT_STATUS
TOLL	decimal (3)	1 wenn Mautstraße, sonst -1
SUBNET_ID	decimal(5)	ID des Subnets, Wertedomäne laut Tabelle LUT_SUBNET
ONEWAY	decimal(1)	Erlaubte Fahrtrichtung für Pkw des Links: 1 bedeutet in Kantenrichtung, 0 bedeutet gegen Kantenrichtung, 2 bedeutet in beide Richtungen, -1 bedeutet unbekannt (= Fahrverbot für PKW) Dieses Feld heißt im zugehörigen GIS Datensatz ONEWAY_CAR, weiters gibt es analoge Attribute ONEWAY_BK und ONEWAY_BUS
BLT	decimal(1)	Busspur in Richtung (1: ja, 0: nein) -, nicht verwendet
BLB	decimal(1)	Busspur gegen Richtung (1: ja, 0: nein) -, wird nicht verwendet
EDGE_ID	decimal(20)	GIP Abschnitts-ID ohne Modulo-Rechnung
STREETCAT	string(3)	die EDGECATEGORY der Baseedge des Links, Wertedomäne laut Tabelle LUT_STREETCATEGORY Im zugehörigen GIS Datensatz heißt das Feld EDGECAT
AGG_TYP	decimal(1)	Nicht verwendet
STATUS	string(1)	Immer "U", wird nicht genutzt
LINK_OBJECTID	decimal(20)	LINK_ID ohne Modulo-Rechnung
FROM_NODE_OBJECTID	decimal(20)	FROM_NODE ohne Modulo-Rechnung
TO_NODE_OBJECTID	decimal(20)	TO_NODE ohne Modulo-Rechnung
SUSTAINER	string (50)	Baulicher Erhalter, Wertedomäne laut Tabelle LUT_SUSTAINER

REGCODE	string (50)	Regionalcode der Basiskante, Wertedomäne laut Tabelle LUT_REGIONALCODE
DBCON	decimal(3)	Normaler Link (0), Datenbank-Verbindungsobjekt (1)

Die Tabelle LINKCOORDINATE enthält die Zwischenpunkte der Kanten. Attribute die nicht verwendet werden, sind rot hinterlegt.

Die Geometrie eines Links ergibt sich im Routingexport aus folgenden Elementen:

- Koordinaten des FromNodes (immer).
- Zwischenpunkten aus LinkCoordinate in der über COUNT angegebenen Reihenfolge (optional, bei geraden Links gibt es keine Zwischenpunkte).
- Koordinaten des ToNodes (immer)

PK: LINK_ID,COUNT

Spalte	Format	Erklärung
LINK_ID	decimal(10)	Link ID (GIP ID modulo 1 Mrd.)
COUNT	decimal(4)	Fortlaufende Nummerierung der Zwischenpunkte, beginnend bei 1.
X	decimal(9,7)	X-Koordinate des Zwischenpunktes
Υ	decimal(9,7)	Y-Koordinate des Zwischenpunktes
Z	decimal (10,2)	Z-Koordinate des Zwischenpunktes
STATUS	string(1)	immer "U" nicht verwendet
LINK_OBJECTID	decimal(20)	LINK_ID nicht abgeschnitten

3.3. Tabelle LINKUSE

Die Tabelle LINKUSE enthält die Nutzungsstreifen des GIP Netzes und folgende Attribute. Attribute die nicht in Verwendung sind, sind rot hinterlegt.

Spalte	Format	Erklärung
USE_ID (PK)	decimal(10)	Use ID (ID aus GIP LinkUse modulo 1 Mrd.)
LINK_ID	decimal(10)	ID des GIP Links, auf dem der Nutzungsstreifen liegt.
Count	decimal(3)	Wird nicht verwendet, war für die Nummerierung links-rechts vorgesehen
Offset	decimal(4,1)	Durchschnittlicher horizontaler Abstand der Mittelachse des Nutzungsstreifens von der Verkehrswegeachse in Metern (negative Werte sind der Abstand links der geometrischen Richtung)

Width	decimal(4,2)	Durchschnittliche Breite des Nutzungsstreifens in Metern
MINWIDTH	decimal(4,2)	Miminale Breite des Nutzungsstreifens in Metern.
FROM_PERCENT	decimal(7,4)	VON_Stationierung in Prozent entlang des Links.
TO_PERCENT	decimal(7,4)	BIS_Stationierung in Prozent entlang des Links.
BASETYPE	decimal(10)	BASETYPE des BASELINEARUSE des LinkUse Wertedomäne laut Tabelle LUT_BASETYPE
USE_ACCESS_TOW	decimal(8)	Enthält die Befahrbarkeiten in Digitalisierungsrichtung auf dem Nutzungsstreifen
USE_ACCESS_BKW	decimal(8)	Enthält die Befahrbarkeiten gegen Digitalisierungsrichtung auf dem Nutzungsstreifen
STATUS	string(1)	Ist derzeit immer "U".
USE_OBJECTID	decimal(20)	USE_ID nicht abgeschnitten (d.h. ohne Modulo)
LINK_OBJECTID	decimal(20)	LINK_ID nicht abgeschnitten (d.h. ohne Modulo)
CLIDEACE		Straßenbelag (falls Link ganz abgedeckt wird)
SURFACE decimal (5)		Wertedomäne laut tabelle LUT_SURFACE
ELECTRIC	decimal (5)	Elektrifizierung (für Schienen); 1, wenn elektrifiziert, sonst -1

3.4. Tabelle BIKEHIKE

Die Tabelle BIKEHIKE enthält die Zusatzattribute für Fuß- und Radverkehr gemäß GIP Standard.

Es sind nur jene LinkUses enthalten, auf denen eine Erlaubnis für entweder Fußgänger oder Radfahrer, zumindest in einer Richtung, existiert. Über die USE_ID ist eine Verknüpfung in die LINKUSE Tabelle möglich. Attribute, die nicht in Verwendung sind, sind rot hinterlegt.

Spalte	Format	Erklärung
USE_ID (PK)	decimal(10)	ID des Nutzungsstreifens (LinkUse ID modulo 1 Mrd.)
USE_ACCESS_TOW	decimal(8)	Befahrbarkeit auf dem Nutzungsstreifen in Richtung
USE_ACCESS_BKW	decimal(8)	Befahrbarkeit auf dem Nutzungsstreifen gegen Richtung
BIKEENVIRONMENT	decimal(1)	Straßenbelag (Wertedomäne laut Tabelle LUT_SURFACE)
BIKEQUALITYTOW	decimal(1)	nicht verwendet
BIKEQUALITYBKW	decimal(1)	nicht verwendet
BIKEDIRECTTOW	decimal(2)	Interne Klassifizierung MTB Routen
BIKEDIRECTBKW	decimal(2)	Interne Klassifizierung MTB Routen

BIKESIGNEDTOW	decimal(1)	1, wenn eine Radroute über den LinkUse in Fahrtrichtung verläuft; ansonsten -1
BIKESIGNEDBKW	decimal(1)	1, wenn eine Radroute über den LinkUse gegen Fahrtrichtung verläuft; ansonsten -1
BIKERECOMMTOW	decimal(3)	Erlebniswert/Empfehlungswert auf dem LinkUse in die Link-Richtung auf einer Skala von 0-20, neutral ist - bei Raderlaubnis 10, bei nur Fußerlaubnis -1
BIKERECOMMBKW	decimal(3)	Erlebniswert/Empfehlungswert auf dem LinkUse gegen die Link-Richtung auf einer Skala von 0-20, neutral ist - bei Raderlaubnis 10, bei nur Fußerlaubnis -1
BIKEWITHFOOTTOW	decimal(1)	nicht verwendet
BIKEWITHFOOTBKW	decimal(1)	nicht verwendet
BIKEFEATURETOW	String (254)	Radinfrastruktur in Richtung auf dem LinkUse
BIKEEFEATUREBKW	String (254)	Radinfrastruktur gegen Link-Richtung auf dem LinkUse
WALKFEATURETOW	String (254)	Fußgängerkennzeichnung in Richtung auf dem LinkUse, Wertedomäne: -) US: Unbekannter Status (Netz des BEV) -) NR: Nicht durchrouten (Weg ist nur für Zugang/Abgang, aber nicht für das reguläre Fußgängerrouting zu verwenden - analog zur MIV Anrainerstraße) -) ST: Weg in Station (Weg dient nur zur ÖV Verknüpfung)
WALKFEATUREBKW	String (254)	Fußgängerkennzeichnung gegen Link- Richtung auf dem LinkUse, Wertedomäne s.o.
STATUS	string(1)	Nicht verwendet
UIAIUU	String(1)	
USE_OBJECTID	decimal(20)	Linkuse ID ohne Modulo

Die Wertedomänen beim Straßenbelag (LUT_SURFACE) sind:

INTREST-Bikeenvironment	Bedeutung
-1	Unbekannt
3	Unbefestigt
4	Befestigt
6	Pflaster
8	Gelände

3.5. Tabelle TURNEDGE

Die Tabelle TURNEDGE enthält die Abbiegeerlaubnisse auf Link-Ebene. Anders als beim Linknetz werden für einen in 2 Richtungen möglichen Abbiegevorgang 2 Zeilen definiert.

Attribute, die nicht in Verwendung sind, sind rot hinterlegt.

Spalte	Format	Beschreibung
TURN_ID (PK)	decimal(10)	ID der Abbiegebeziehung (modulo 1 Mrd.)
FROM_LINK	decimal(10)	LINK-ID der VON-Kante (modulo 1 Mrd.)
TO_LINK	decimal(10)	LINK ID der NACH-Kante (modulo 1 Mrd.)
VIA_NODE	decimal(10)	Knoten-ID des passierten Knotens oder virtuellen Knotens (modulo 1 Mrd.)
VEHICLE_TYPE	decimal(8)	Verkehrsmittel für die ein Abbiegen erlaubt ist, Bitmaske wie in ACCESS_*
TIME	decimal(3)	Zeitbedarf für das Abbiegen in Sekunden, derzeit nicht verwendet
Capacity	decimal(5)	MIV Kapazität in Richtung der Abbiegebeziehung, derzeit nicht verwendet
LanesFrom	decimal(3)	Anzahl der Fahrspuren in Kreuzung hineinführend, derzeit nicht verwendet
LanesTo	decimal(3)	Anzahl der Fahrspuren aus Kreuzung herausführend, derzeit nicht verwendet
STATUS	string(1)	Ist derzeit immer "U"; nicht verwendet
TURN_OBJECTID	decimal(20)	TURN_ID nicht abgeschnitten
FROM_LINK_OBJECTID	decimal(20)	FROM_LINK nicht abgeschnitten
TO_LINK_OBJECTID	decimal(20)	TO_LINK nicht abgeschnitten
VIA_NODE_OBJECTID	decimal(20)	VIA_NODE nicht abgeschnitten

3.6. Tabelle TURNUSE

Die Tabelle TURNUSE enthält die Abbiegeerlaubnisse auf Linkuse-Ebene. Attribute, die nicht in Verwendung sind, sind rot hinterlegt.

Spalte	Format	Beschreibung
TURN_ID (PK)	decimal(10)	ID der Abbiegebeziehung (modulo 1 Mrd.)
FROM_USE	decimal(10)	Nutzungsstreifen-ID der VON-Kante (modulo 1 Mrd.)
TO_USE	decimal(10)	NutzungsstreifenID der NACH-Kante (modulo 1 Mrd.)

FROM_PERCENT	decimal(7,4)	Prozent auf Von-Link
TO_PERCENT	decimal(7,4)	Prozent auf Nach-Link
VEHICLE_TYPE	decimal(8)	Verkehrsmittel für die ein Abbiegen erlaubt ist
TIME	decimal(3)	Zeitbedarf für das Abbiegen in Sekunden; nicht verwendet
TURN_TYPE	decimal(3)	Typ des Abbieges, z.B. Zebrastreifen bei möglichem Straßenseitenwechsel; nicht verwendet
TURN_DIRECTION_FROM	decimal(1)	Richtung des FROM-Abbiegers, 1: in Kantenrichtung, 0: in Gegenrichtung
TURN_DIRECTION_TO	decimal(1)	Richtung des TO-Abbiegers, 1: in Kantenrichtung, 0: in Gegenrichtung
BASETYPE	decimal(10)	BASETYPE des TurnUse
STATUS	string(1)	Ist immer "U", keine Verwendung dieses Attributes
TURN_OBJECTID	decimal(20)	TURN_ID nicht abgeschnitten (d.h. ohne Modulo)
FROM_USE_OBJECTID	decimal(20)	FROM_LINK nicht abgeschnitten (d.h. ohne Modulo)
TO_USE_OBJECTID	decimal(20)	TO_LINK nicht abgeschnitten (d.h. ohne Modulo)

3.7. Tabellen STREETNAMES und LINK2STREETNAMES

Die Tabelle STREETNAMES enthält die Straßennamen inklusive ihrer Namenskategorie (Verweis auf LUT_NAMECATEGORY) und SKZ.

Es werden nur Namen exportiert, die auch eine Zuordnung zu einem Link sowie eine gültige Namenskategorie haben. Namen mit der Namenskategorie "Lokal verwendeter (interner) Name" (10071) werden nicht exportiert.

Spaltenname	Format	Erklärung
OFFICAL_MUN_CODE	string(10)	Offizieller Gemeindeschlüssel, z.B. AT90101 (Wertedomäne laut Tabelle LUT_REGIONALCODE)
STREET_ID (PK)	decimal(10)	ID des Straßennamens
STREET_NAME	string(254)	Strassenname
NAMECAT	decimal(10)	Namenskategorie; Wertedomäne laut Tabelle LUT_NAMECATEGORY
NAMECAT_VAL	string(254)	Bedeutung der Namenskategorie
STREETNUM	string(20)	nicht verwendet
PARTOFPLACE_NAME	string(254)	Name des Bezirks bzw. des Ortsteils, nicht verwendet

STATUS	string(1)	immer "U", nicht verwendet
OWNER_ID	decimal(3)	Datenbank ID des Namens; Wertedomäne laut Tabelle LUT_DATABASE
STREET_OBJECTID	decimal(20)	STREET_ID nicht abgeschnitten
SHORTNAME	string(254)	Kurzname

Die Tabelle LINK2STREETNAMES enthält die Zuordnung von Namen zu Links:

PK: LINK_ID,STREET_ID

Spaltenname	Format	Beschreibung
LINK_ID	decimal(10)	ID der Kante, Verweis auf Tabelle Link (ID modulo 1 Mrd.)
COUNT	decimal(4)	Fortlaufende Nummerierung der Namen zu einer Kante
OFFICAL_MUN_CODE	string(8)	Verweis auf offizieller Gemeindeschlüssel in Tabelle StreetNames, z.B. AT90101
STREET_ID	decimal(10),	Verweis auf ID des Straßennamens in in Tabelle StreetNames.
STATUS	string(1)	Ist derzeit immer "U".
LINK_OBJECTID	decimal(20)	LINK_ID nicht abgeschnitten
STREET_OBJECTID	decimal(20)	STREET_ID nicht abgeschnitten

3.8. Tabelle LINKEDGEROUTE

Die Tabelle LinkEdgeRoute ordnet die Links den Edges/Subrouten und Routen zu.

Sie umfasst:

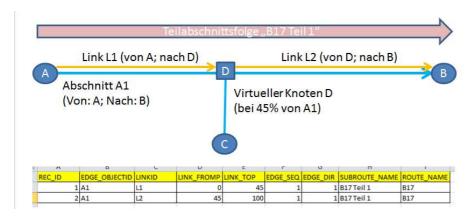
- a) Für alle Links: Abfolge und Stationierung der Links an einem Edge.
- b) Für Links, über die eine Abschnittsfolge verläuft:

Abfolge der Links an der Subroute (= topologisch zusammenhängende Teilroute), sowie eine Verbindung von Links und Edges mit den Bezugspunkten und Routen.

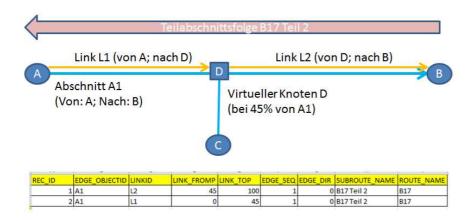
Eine Route kann aus beliebig vielen Subrouten bestehen, der Routenname ist auch im BEPU Datensatz vorhanden, ebenso die Edge ID.

Spaltenname	Format	Erklärung
RECID (PK)	decimal (10)	ID des Datensatzes (repräsentiert Abfolge)

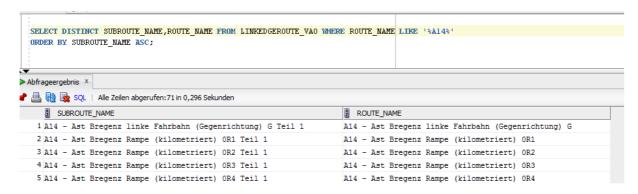
EDGE_OBJECTID	decimal (15)	Edge ID
LINKID	decimal (10)	Link ID
LINK_FROMP	decimal(10,4)	From Percentage des Links am Edge
LINK_TOP	decimal(10,4)	To Percentage des Links am Edge
EDGE_SEQ	decimal(5)	Abfolge des Edges an der Subroute
EDGE_DIR	decimal(2)	Richtung, in der die Subroute den Edge traversiert (0 = gegen Richtung, in = in Richtung); Edge Richtung ist immer auch Link Richtung
SUBROUTE_NAME	string(1000)	Name der Subroute
ROUTE_NAME	string (1000)	Name der Route
SUBROUTE_STARTKM	decimal(10,5)	Start KM der Subroute
SUBROUTE_ENDKM_	decimal(10,5)	End KM der Subroute
SUBROUTE_ID	decimal(15)	Object ID der Subroute
ROUTE_ID	decimal(15)	Object ID der Route
ONR	string(10)	Orientierungswert ab GIP 6/2020
ENAME	string(30)	Laufende Nummer ab GIP 6/2020

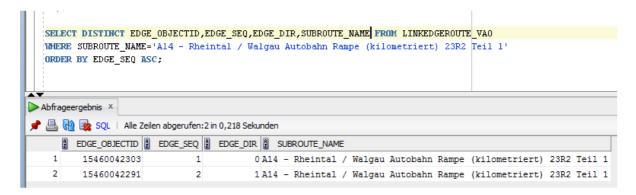

Erklärungen zu dieser Tabelle:

Die Subrouten bestehen aus einer Abfolge von topologisch zusammenhängenden GIP Abschnitten (Edges), die einer Kombination aus Name (z.B. Triester Straße) und Ergänzungsname (z.B. Hauptfahrbahn) zugewiesen sind. Die Reihenfolge der Abschnitte an der Subroute wird durch das Attribut EDGE_SEQ festgelegt, EDGE_DIR gibt die Richtung an, in der der Abschnitt im Vergleich zur Subroute liegt (0 = gegen Richtung, 1 = in Richtung).


Jeder Abschnitt kann aus mehreren Links bestehen, die über LINK_FROMP und LINK_TOP prozentuell auf den Abschnitt verweisen. Die Tabelle enthält die Links in der Reihenfolge, in der sie von der Subroute verwendet werden. Um eine einfache Sortierung zu ermöglichen, existiert die REC_ID, welche die Reihenfolge der Records angibt.

Beispiele:


Teilabschnittsfolge verläuft in Richtung über Abschnitt mit 2 Links:


Teilabschnittsfolge verläuft gegen Richtung über Abschnitt mit 2 Links:

Abfragen der Teilabschnittsfolgen, die auf der A14 existieren:

Abfragen der ABSCHNITTE, welche eine bestimmte Teilabschnittsfolge der A14 bilden:

Die Teilabschnittsfolge verläuft also als 1. Über Abschnitt 15460042303 GEGEN Abschnittsrichtung, und als 2. Über Abschnitt 15460042291 IN Abschnittsrichtung.

Abfragen der LINKS, welche die genannte Teilabschnittsfolge der A14 bilden:

1.7	,													
SEL	SELECT DISTINCT REC_ID,LINKID,LINK_FROMP,LINK_TOP,EDGE_OBJECTID,EDGE_SEQ,EDGE_DIR,SUBROUTE_NAME FROM LINKEDGEROUTE_VAO													
WHERE SUBROUTE NAME='Al4 - Rheintal / Walgau Autobahn Rampe (kilometriert) 23R2 Teil 1'														
ORD	ER BY REC	_ID ASC;												
•														
• Abfra	igeergebnis	X												
a	🔞 🅦 SQL	. Alle Zeilen	abgerufen:3 in 1,4	97 Sekunden										
	REC_ID	LINKID	LINK_FROMP	LINK_TOP	EDGE_OBJECTID	EDGE_SEQ	EDGE_DIR	SUBROUTE_NAME						
1	12547	461017261	93,8136	100	15460042303	1	0 A1	4 - Rheintal /	Walgau	Autobahn	Rampe	(kilometriert)	23R2 1	Teil 1
2	12548	461011147	0	93,8136	15460042303	1	0 A1	4 - Rheintal /	Walgau	Autobahn	Rampe	(kilometriert)	23R2 1	Teil 1
3	12549	461017253	0	100	15460042291	2	1 A1	4 - Rheintal /	Walgau	Autobahn	Rampe	(kilometriert)	23R2 1	feil 1

Die Teilabschnittsfolge verläuft also zuerst über Link 461017261 (gegen Abschnittsrichtung – die Abschnittsrichtung entspricht IMMER auch der Linkrichtung). Dieser Link liegt ziemlich am Ende des Abschnittes und wird daher zuerst passiert.

Danach passiert sie den Link 461011147 (der liegt ebenfalls auf Abschnitt 15460042303, aber am Anfang).

Danach kommt sie über den Link 461017253 IN Abschnitts/Linkrichtung. Dieser ist der einzige Link auf seinem Abschnitt.

Links, über die keine Abschnittsfolge verläuft:

Für Links, über die keine Subroute verläuft, ist lediglich die Zuordnung zu ihrem Edge angegeben.

3.9. Tabelle REFERENCEOBJECT, LINK2REFERENCEOBJECT, USE2REFERENCEOBJECT

Die Tabellen dienen zum Export von Informationen über Verortungsobjekte.

Fachinformationen finden sich in den jeweiligen Datensätzen. Dies sind die folgenden:

- -) Radrouting (GIS Datensatz BIKEROUTES_OGD)
- -) Brunnels (GIS Datensatz BRUNNEL_EXPORT_OGD_L)

Tabelle REFERENCEOBJECT

= enthält die Informationen zum Verortungsobjekt

Spalte	Format	Spalte Langbezeichnung	Erklärung
REFOBJ_ID (PK)	Long	Reference Object ID	GIP - ObjectID des Verortungsobjektes
REFOBJ_EXTID	String	Reference Object Externalid	Externe ID des Verortungsobjektes (= Fremdidentität)
REFOBJ_ORG	String	Reference Object Orgcode	Organisationscode des Verortungsobjektes
REFOBJ_FEATURENAME	String	Reference Object Featurename	Bezeichnung des Verortungsobjektes
OWNER_ID	Integer	Owner ID	Datenbank ID des Verortungsobjektes (Wertedomäne laut Tabelle LUT_DATABASE)
REFTYPE	Integer	Reference Type	Typ des Verortungsobjektes
REFTYPE_L	String	Reference Type Long	Typ des Verortungsobjektes als String
NETREFTYPE	Integer	Netreference Type	Typ der Netzreferenz (Wertedomäne laut Tabelle LUT_NETREFTYPE - 0 Punkt, 1 Linie, 2 komplex)

NAMETEXT	String	Nametext	Nametext des zugeordneten Geonamens
NAMECAT	Integer	Namecategory	Namenskategorie des zugeordneten Geonamens, Wertedomäne laut Tabelle LUT_NAMECATEGORY
NAMECAT_L	String	Namecategory Long	Namenskategorie Langname

Tabelle LINK2REFERENCEOBJECT

= enthält die Netzreferenz von Verortungsobjekten auf Abschnittsebene

Spalte	Format	Spalte Langbezeichnung	Erklärung
IDSEQ (PK)	Integer	ID Sequence	ID für die sortierte Abfolge der Teilnetzreferenzen
REFOBJ_ID	Long	Reference Object ID	GIP - ObjectID des Verortungsobjektes
LINK_ID	Integer	Link ID	ID des GIP Links, auf dem die Teilnetzreferenz liegt
EDGE_ID	Long	Edge ID	ID des Abschnittes, dem der Link zugeordnet ist
FROM_LINKP	Float	From Link Percent	Bei linearer Netzreferenz der Startpunkt am Link
TO_LINKP	Float	To Link Percent	Bei linearer Netzreferenz der Endpunkt am Link
AT_LINKP	Float	At Link Percent	Bei punktueller Netzreferenz der Referenzpunkt am Link
EDGESEQ	Integer	Edge Sequence	Reihenfolge des Abschnittes in der Gesamtnetzreferenz
DIRECTION	Integer	Direction	Bezugsrichtung der Teilnetzreferenz auf den Link (Wertedomäne laut der Tabelle LUT_DIRECTION

-1 unbekannt, 0 gegen, 1 in, 2 beide)

Tabelle USE2REFERENCEOBJECT

= enthält die Netzreferenz von Verortungsobjekten auf Nutzungsebene

Spalte	Format	Spalte Langbezeichnung	Erklärung
IDSEQ	Integer	ID Sequence	ID für die sortierte Abfolge der Teilnetzreferenzen
REFOBJ_ID	String	Reference Object ID	GIP - ObjectID des Verortungsobjektes
REFOBJ_FEATURENAME	String	Reference Object Featurename	Bezeichnung des Verortungsobjektes
LINEARUSE_OBJECTID	Long	Linearuse ID	ID des GIP Linearuse (abrufbar im Behörden/OGD Export als GIS Datensatz im Geopackage Network)
TURNUSE_OBJECTID	Long	Turnuse ID	ID des GIP TurnUse (abrufbar im Behörden/OGD Export als GIS Datensatz im Geopackage Network)
EDGE_OBJECTID	Long	Edge ID	Bei Nutzungsstreifenreferenzen: ID des Edge, auf dem der Linearuse liegt
FROM_EDGEPERCENT	Float	From Edge Percent	Von-Stationierung am Abschnitt (nicht am Link!)
TO_EDGEPERCENT	Float	To Edge Percent	Nach-Stationierung am Abschnitt (nicht am Link!)
EDGESEQUENCE	Integer	Edge Sequence	Reihenfolge des Abschnittes in der Gesamtnetzreferenz
DIRECTION	Integer	Direction	Bezugsrichtung der Teilnetzreferenz auf den Edge

Diese Referenzen sind künftig befüllt und existieren aber nur für (nutzungsstreifengenaue) Radrouten-Verortungsobjekte. Sie repräsentieren die Abfolge der Referenzen auf Ebene der Linearuses und Turnuses. Sie verlinken somit auf das im Behörden-, und OGD Export enthaltene Geopackage Network.

3.10. Tabelle LINK2BIKEHIKE

Die Tabelle ist nicht befüllt.

3.11. Tabelle LinkUseReference

Die Tabelle enthält genauere Referenzen, initial für Belag, auf den Nutzungsstreifen.

Spalte	Format	Erklärung
USE_ID	decimal(10)	Use ID
LINK_ID	decimal(10)	Link ID
EDGE_ID	decimal(19)	ID des Abschnittes
		Typ der Nutzungsbedingung/Referenz. Initial immer 123 (Belag)
TYPE	decimal(5)	Wertedomäne laut der Tabelle LUT_USECONDITION.
VALUE	decimal(5)	Wert der Nutzungsbedingung/Referenz
FEATURENAME	String(255)	Name der Nutzungsbedingung/Referenz
FROM_SURFACE_PERCENTLINK	decimal(5,1)	Startpunkt am Link
TO_SURFACE_PERCENTLINK	decimal(5,1)	Endpunkt am Link
DIRECTION	decimal(3)	Richtung

3.12. Tabelle DiversionRoute, Link2DiversionRoute

Diese Tabellen sind im OGD Export nicht befüllt.

4. Beschreibung des Datensatzes B – GIP Network

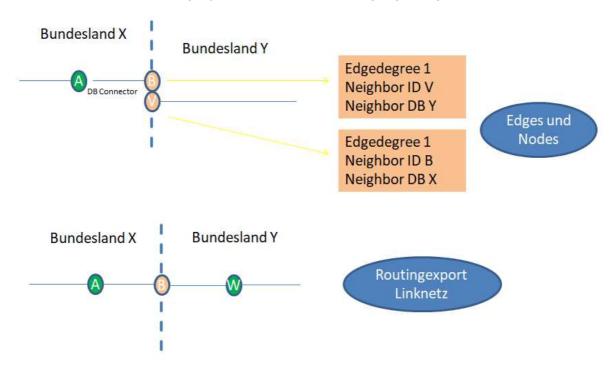
4.1. Geopackage Layer "Edge"

Dieser Layer enthält die GIP Abschnitte (englische Bezeichnung "Edge") als linearen Layer mit Attributen. Die Geometrie entspricht der Straßenmittelachse, ist aber nicht an Kreuzungen mit anderen Subnetzen aufgesplittet.

Dieser Datensatz ist nicht routingfähig, eignet sich aber aufgrund seiner stabileren ID besser als Referenzierungsbasis als der Datensatz LINK.

Die Edges und Nodes werden nicht der Exportlogik unterzogen und enthalten somit die Datensätze wie in der GIP gepflegt, sodass extern / nachträglich für den GIP Routingexport transformierte oder einbezogene Daten wie das Sonderstraßenbahnnetz (Subnetz ID 30201) oder die Z Koordinaten in diesen Datensätzen nicht vorhanden sind.

Spalte	Format	Erklärung
ACTION_ID	long	ID der letzten Änderung, "Version" des Edge
BAUSTATUS	integer	Status der Kanten, Wertedomäne laut Tabelle LUT_STATUS
EXTID	string	Externe ID, derzeit nur in Tirol befüllt
EXTORG	string	Externe Organisation, nicht relevant
SUBNETID	integer	Subnetz ID, Wertedomäne laut Tabelle LUT_SUBNET
FOW	integer	Bauliche Struktur, Wertedomäne laut Tabelle LUT_FOW
FRC	integer	Funktionale Bedeutung, Wertedomäne laut Tabelle LUT_FRC
ANGLESTART	float	Winkel am Beginn der Kante
ANGLEEND	float	Winkel am Ende der Kante
SHAPELENGTH	float	Länge


SUSTAINER	string	Baulicher Erhalter der Kante, Wertedomäne laut Tabelle LUT_SUSTAINER
REGCODE	string	Regionaladministrative Zuordnung der Kante, Wertedomäne laut Tabelle LUT_REGIONALCODE
EDGECAT	string	Abschnittskategorie, Wertedomäne laut Tabelle LUT_STREETCATEGORY
VALIDFROM	Date	Gültig ab
MAINNAMETEXT	string	Text des Hauptnamens
VALIDTO	Date	Gültig bis
		Trassenbreite (gewidmete Breite).
DWIDTH	float	GIP-internes Attribut, für konkrete Berechnungen wird empfohlen nur die Breiten der Nutzungsstreifen zu nutzen.
OBJECTID (PK)	long	Objekt ID der Kante
NODEFROMID	long	Objekt ID des From Node
NODETOID	long	Objekt ID des To Node
OWNER_ID	integer	ID des Besitzers, Wertedomäne laut Tabelle LUT_DATABASE
TIMESTAMP	Date	Letztes Bearbeitungsdatum
DBCONNECTOR	integer	Falls 1, ist der Edge ein Datenbankverbinder
FEATURENAME	String	Berechneter Name für die Kante (ab GIP 06/21)

4.2. Geopackage Layer "Node"

Dieser Layer enthält die GIP Knoten (englische Bezeichnung "Node") als punktuellen Layer mit Attributen. Die Knoten werden sowohl von den Abschnitten als auch den Links referenziert.

Spalte	Format	Erklärung
ACTION_ID	long	ID der letzten Änderung, "Version" des Knotens
		1 = echter Knoten, 2 = virtueller Knoten
TOPOTYPE	integer	3 = Linkknoten (laut Tabelle LUT_TOPOTYPE)
EDGEDEGREE	integer	Kantengrad des Knotens
FEATURENAME	string	Bezeichnung des Knotens
NODEPROZ	float	Nur bei virtuellen Knoten befüllt, Stationierung am Basisedge
ALIVE	integer	Historisierungsstatus des Knotens (2 = neu, 1 = bearbeitet, 0= gelöscht)
VALIDFROM	Date	Gültig ab
VALIDTO	Date	Gültig bis
OBJECTID (PK)	long	Knoten ID
BASEEDGE_ID	long	Basiskanten ID
OWNER_ID	integer	Zugehörige Datenbank (Wertedomäne laut LUT_DATABASE)
NEIGHBOR_ID	integer	ID des Nachbarknotens bei Datenbankverbinderknoten
TIMESTAMP	Date	Zeitstempel letzte Bearbeitung
REMARK	string	Anmerkung
NEIGHBOR_DB	integer	Datenbank, auf die der Datenbankverbinder zeigt

Hinweis: Die Knoten sind an Datenbankgrenzen nicht direkt verbunden, sondern verweisen über weiche Referenzen aufeinander. Dafür dienen die Felder "NEIGHBOR_ID" und "NEIGHBOR_DB". Im Routingexport sind diese Netzübergänge aufgelöst.

Ab GIP 06/21 werden "Linkknoten" mitexportiert. Dies sind Knoten mit dem TOPOTYPE 3. Diese sind nur für das LINKNETZ (routingfähig), nicht aber das EDGE Netz relevant.

4.3. Geopackage Layer "Link"

Der Geopackage Layer LINKNETZ enthält die Geometrien der Straßenmittelachsen als GIP-Links, die ein routingfähiges Netz bilden. D.h. an Kreuzungen sind die Geometrien aufgesplittet.

Der Datensatz entspricht der Tabelle LINK aus dem Routingexport bzw. dem schon in früheren Versionen mit ausgeliefertem Linknetz.

Spalte	Format	Beschreibung
LINK_ID (PK)	integer	Eindeutige ID des GIP-Links.
FROM_NODE	integer	Eindeutige ID des Start-Knotens. Dadurch ist die Digitalisierungsrichtung des Links implizit definiert.
TO_NODE	integer	Eindeutige ID des End-Knotens.
NAME1	string	Hauptname des Links.
NAME2	string	Möglicherweise weitere vorhandene Namen des Links mit Schrägstrich getrennt. Für eine korrekte Verwendung der Namen wird empfohlen, die Routingexport – Tabellen StreetNames
		und Link2StreetNames zu nutzen.
SPEEDCAR_T	integer	Durchschnittsgeschwindigkeit (Routinggeschwindigkeit) für PKW in Digitalisierungsrichtung in km/h.
SPEEDCAR_B	integer	Durchschnittsgeschwindigkeit (Routinggeschwindigkeit) für PKW gegen Digitalisierungsrichtung in km/h.
VMAX_CAR_T	integer	Höchstgeschwindigkeit für PKW in Digitalisierungsrichtung in km/h.
VMAX_CAR_B	integer	Höchstgeschwindigkeit für PKW gegen Digitalisierungsrichtung in km/h.
ACCESS_TOW	integer	Befahrbarkeit laut Bitmaske in Digitalisierungsrichtung auf dem Link.
ACCESS_BKW	integer	Befahrbarkeit laut Bitmaske gegen Digitalisierungsrichtung auf dem Link.
LENGTH	float	Länge des Links in Metern.
		Bitte um Beachtung, dass durch projektionsbedingte Umrechnungen Ungenauigkeiten in der Länge auftreten können, die sich je nach Projektion bis zu 0,5% bewegen können.
FRC	integer	Funktionale Straßenbedeutung Wertedomäne laut Tabelle LUT_FRC
LANES_TOW	integer	Spurenanzahl für den Fließverkehr in Digitalisierungsrichtung.
LANES_BKW	integer	Spurenanzahl für den Fließverkehr gegen Digitalisierungsrichtung.
FORMOFWAY	integer	Bauliche Ausprägung des Links. Wertedomäne laut Tabelle LUT_FOW

MAXHEIGHT	float	Höhenbeschränkung in Metern.
MAXWIDTH	float	Breitenbeschränkung in Metern.
MAXPRESS	float	Tonnagebeschränkung in Tonnen.
ABUTTERCAR	integer	PKW Fahrverbot ausgenommen Anrainer.
URBAN	integer	Kennzeichnet, ob der Link "innerorts" oder "außerorts" liegt. Dies betrifft nicht die STVO-Maßnahme "Ortsgebiet", sondern ist eine allgemeine Kennzeichnung, ob ein Link innerorts oder Freiland-Charakter hat.
WIDTH	float	Breite der Fahrbahn in Metern. Falls keine Fahrbahn vorhanden, ist das Feld mit -1 befüllt, vollständige Breite ergibt sich aus Tabelle LINKUSE im Routingexport.
TOLL	integer	Links mit TOLL=1 sind Mautstraßen oder zeitlich befristete Mautstraßen.
BAUSTATUS	integer	Baustatus des Links. Nur Links mit Status "aktiv" (5) sind für das Routing relevant. Wertedomäne laut Tabelle LUT_STATUS
SUBNET_ID	integer	Subnetz des Links. Jeder Link in der GIP ist einem Subnetz zugeordnet, das seine organisatorische Zugehörigkeit kennzeichnet.
ONEWAY_CAR	integer	Redundantes Attribut, welches die PKW-Befahrbarkeit kennzeichnet. -1 Fahrverbot 0 Einbahn gegen Digitalisierungsrichtung 1 Einbahn in Digitalisierungsrichtung 2 beidseitig freigegeben
ONEWAY_BK	integer	Redundantes Attribut, welches die Rad-Befahrbarkeit kennzeichnet. -1 Fahrverbot 0 Einbahn gegen Digitalisierungsrichtung 1 Einbahn in Digitalisierungsrichtung 2 beidseitig freigegeben
ONEWAY_BUS	integer	Redundantes Attribut, welches die Busbefahrbarkeit kennzeichnet. -1 Fahrverbot 0 Einbahn gegen Digitalisierungsrichtung 1 Einbahn in Digitalisierungsrichtung 2 beidseitig freigegeben
EDGE_ID	long	Abschnitts-ID der GIP.
EDGECAT	string	Straßenkategorie Wertedomäne laut Tabelle LUT_STREETCATEGORY Bitte um Beachtung, dass in einigen Bundesländern im niederrangigen Netz die Straßenkategorie gemäß GIP Mindeststandard zur Verfügung gestellt wird (d.h. "R" im niederrangigen Netz).

		In anderen Bundesländern ist bereits die volle Genauigkeit gemäß Standard im Export beinhaltet.
REGCODE	string	Der Regionalcode gibt die regionaladministrative Zuordnung des Links wieder. Wertedomäne laut Tabelle LUT_REGIONALCODE
SUSTAINER	string	Erhalter des Links. Wertedomäne laut Tabelle LUT_SUSTAINER
DBCON	integer	Link ist kein Datenbankverbinder (0) oder ist einer (1)

4.4. Geopackage Layer "LinearUse"

Dieser Layer enthält die Nutzungsstreifen (englische Bezeichnung "Linearuse") der GIP als lineare Geometrien mit Attributen.

Spalte	Format	Erklärung
ACTION_ID	long	ID der letzten Änderung, "Version" des Knotens
EXTID	string	Externe ID des Datensatzes (derzeit leer)
EXTORG	string	Externe Organisation (nicht relevant)
EDGEPERCFROM	float	Längslage an der Kante BEGINN
EDGEPERCTO	float	Längslage an der Kante ENDE
BASETYPE	integer	Nutzungsstreifentyp. Werte laut Tabelle LUT_BASETYPE
OFFSETAVG	float	Mittlerer Versatz von der Kante
FEATURENAME	string	Bezeichnung des Nutzungsstreifens
WIDTHAVERAGE	float	Mittlere Breite des Nutzungsstreifens
WIDTHMIN	float	Engstelle am Nutzungsstreifen
VALIDFROM	Date	Gültig ab
VALIDTO	Date	Gültig bis
OBJECTID (PK)	long	ID des Nutzungsstreifens

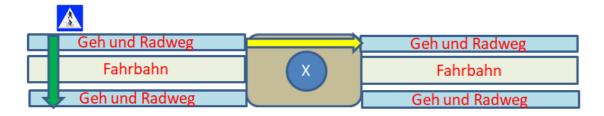
EDGE_ID	long	ID der Kante, auf der der Nutzungsstreifen referenziert ist
OWNER_ID	integer	Datenbank ID, Wertedomäne laut Tabelle LUT_DATABASE
TIMESTAMP	Date	Letztes Bearbeitungsdatum
LENGTH	float	Länge
GEOMSTATUS	integer	Falls ID ungleich 10, wurde der Nutzungsstreifen geometrisch bearbeitet und ist somit nicht mehr automatisch parallel zur Edgegeometrie
REMARK	string	Anmerkungsfeld

Hinweis: Nutzungsstreifen sind wie Abschnitte nicht routingfähig und nicht an Kreuzungen aufgesplittet. Ihr routingfähiges Pendant im Routingexport sind die LinkUses.

Die Geometrie ist grundsätzlich parallel zur Kantengeometrie, kann aber nachträglich bearbeitet worden sein, was im Feld Geometriestatus ersichtlich ist.

4.5. Geopackage Layer "TurnUse"

Dieser Layer enthält die Abbiegerelationen (englische Bezeichnung "Turnuse") der GIP als lineare Geometrien mit Attributen.


Spalte	Format	Erklärung
ACTION_ID	long	ID der letzten Änderung, "Version" des Knotens
EXTID	string	Externe ID des Datensatzes (derzeit leer)
EXTORG	string	Externe Organisation (nicht relevant)
EDGEPERCFROM	float	Stationierung (Längslage) an der Kante, aus welcher die Abbiegerelation abgeht
EDGEPERCTO	float	Stationierung (Längslage) an der Kante, in welche die Abbiegerelation einmündet

BASETYPE	integer	Typ der Abbiegerelation, Wertedomäne laut Tabelle LUT_BASETYPE
FEATURENAME	string	Bezeichnung der Abbiegerelation
DIRECTIONFROM	integer	Richtung (0 zurück, 1 hin) zum Abschnitt, von dem die Abbiegerelation abgeht
DIRECTIONTO	integer	Richtung (0 zurück, 1 hin) zum Abschnitt, wo die Abbiegerelation einmündet
ALIVE	integer	Historisierungsstatus (2 neu, 1 bearbeitet, 0 gelöscht)
VALIDFROM	Date	Gültig ab
VALIDTO	Date	Gültig bis
OBJECTID (PK)	long	ID der Abbiegerelation
USE_TO_ID	long	ID des To-Nutzungsstreifens
USE_FROM_ID	long	ID des From-Nutzungsstreifens
VIA_NODE_ID	long	ID des Via Knotens
OWNER_ID	integer	ID des Besitzers, Wertedomäne laut Tabelle LUT_DATABASE
TIMESTAMP	Date	Datum der Bearbeitung
GEOMSTATUS	integer	Geometriestatus, Beschreibung siehe Layer "LINEARUSE"

Abbiegerelationen sind die baulich-logischen Verbindungen der Nutzungsstreifen im Kreuzungsbereich. Es existiert nur 1 Objekt zwischen 2 Nutzungsstreifen. Die Abbiegerelation ist das Trägerobjekt für die **Abbiegeerlaubnisse**. Diese sind im Routingexport in der Tabelle TURNEDGE bzw. auf Nutzunsstreifenebene Tabelle TURNUSE enthalten.

Abbiegerelationen können auch 2 Nutzungsstreifen am selben Abschnitt verbinden und auch außerhalb des Kreuzungsbereiches liegen. In diesem Fall handelt es sich um Querungen.

Ob es sich um eine Querung handelt oder um eine Verbindung zweier Abschnitte, kann daran erkannt werden, ob ein VIA_NODE angegeben ist.

Beispiel: Die grüne Querung liegt abseits des Knotens X und verbindet die beiden Geh- und Radwege an derselben Straße.

Die gelbe Querung hat den Via Node X und verbindet die beiden Geh- und Radwege an unterschiedlichen Kanten.

Beide Abbiegerelationen dürfen laut Routingexport in beide Richtungen für Fuß und Rad genutzt werden, aber die Nutzung ist nicht für PKW erlaubt.

4.6. Geopackage Layer "Version"

Der Layer VERSION enthält die aktuelle Version und das Datum des Geopackages.

5. Beschreibung des Datensatzes C – GIP Reference

5.1. Geopackage Layer "Brunnel"

Der Layer BRUNNEL_EXPORT_OGD_L enthält die linearen Geometrien von auf die GIP referenzierten Kunstbauwerken. (Brunnel = Brücke/Tunnel)

Im Normalfall ist eine Geometrie pro Brunnel-Objekt vorhanden.

Die folgenden Attribute sind vorhanden:

Spalte	Format	Erklärung
OBJECTID (PK)	long	ID des Verortungsobjektes
BRL_NAME	string	Name der Brücke/des Tunnels
BRL_LEVEL	string	Logische Höhe
OWNER_ID	integer	ID des Besitzers, Wertedomäne laut Tabelle LUT_DATABASE
BRL_TYP	integer	Typ des Brunnels, Wertedomäne laut Tabelle LUT_REFERENCETYPE
BRL_TYP	string	Bezeichnung des Typs des Brunnels.

5.2. Geopackage Layer "Bezugspunkte"

Die Bezugspunkte sind punktuelle Informationen, die kilometrierungsrelevant sind. Wie die Kilometrierung gebildet wird, ist jedoch je nach Organisation unterschiedlich:

- Die Felder FROMKM/TOKM enthalten die Kilometer-Information, wobei sich zur Abbildung von Fehlkilometern (z.B. bei Straßenumbauten) die beiden Werte unterscheiden können.
- Über EDGE_ID ist der Bezugspunkt einem Abschnitt zugeordnet und referenziert diesen bei EDGEPROZ über einen punktuellen Prozentwert.
- Ein Bezugspunkt verweist eindeutig auf einen ERGNAMEN (= Kombination aus Straßennamen und ergänzenden Attributen), der wiederum einem NAMEN (= Join auf Tabelle INTREST_STREETNAMES möglich) zugewiesen ist.
- Optional ist ein Bezugspunkt auch über den Ergnamen einer ROUTE (= Kilometrierte Abschnittsfolge) zugeordnet.

Attribut	Format	Beschreibung
OBJECTID (PK)	long	Eindeutige Objekt ID des Bepus
FROMKM	float	Kilometerinformation des Bezugspunktes

TOKM	float	Kilometerinformation des Bezugspunktes bei Fehlkilometrierung (sonst identisch mit dem FROMKM, Abweichung ist möglich)
EDGEPROZ	float	Stationierung an der GIP Kante (Abschnitt; nicht Link) in %
EDGE_OBJECTID	long	Objekt ID der GIP Kante (Abschnitt)
VALIDFROM	Date	Gültigkeitsdatum
VALIDTO	Date	Gültigkeitsdatum
ALIVE	integer	Historisierung
FEATURENAME	string	Berechnete Bezeichnung
OWNER_ID	integer	Datenbank ID des GIP Besitzers (laut LUT_DATABASE)
TYPE	integer	Beputyp laut LUT_BEPUTYPE
DISTANCE	float	Distanz (bei Rollkm)
PREVBEPU_OBJECTID	long	ID des vorigen Punktes (bei Rollkm)
ISBIGTRAFFICCIRCLE	integer	Teil eines großen Kreisverkehrs
KM_QUALITY	float	Metawert
BEPU_OCCURRENCE	integer	Bezugspunkte – Ausprägung (laut LUT_BEPU_OCCURRENCE)
ERGNAMEID	long	ID des GIP Straßenergänzungsnamens
NAMEID	long	ID des GIP Namens
ROUTEID	long	ID der Abschnittsfolge (GIP.ROUTE)

5.3. Geopackage Layer "Bikeroutes"

Der Layer Bikeroutes enthält die Radrouten als lineare Geometrien mit Attributen. Die LUT Werte sind teilweise bereits aufgeschlüsselt.

Die Netzreferenzen sind dem GIP Routingexport zu entnehmen (Tabelle Link2Referenceobject).

Attribut	Format	Beschreibung
OBJECTID (PK)	long	Object ID des Verortungsobjektes
VALIDFROM	Date	"Gültig ab" des Verortungsobjektes
OWNER_ID	integer	ID des Besitzers, Wertedomäne laut Tabelle LUT DATABASE
OBJECTNAME	string	Bezeichnungsfeld des Verortungsobjektes
REFTYPE	integer	Typ des Verortungsobjektes, Wertedomäne laut Tabelle LUT REFERENCETYPE
REFTYPE_N	string	Bezeichnung des Verortungsobjekttyps, Name aus LUT REFERENCETYPE

EXTORGCODE	string	Externe Organisation des Verortungsobjektes
EXTERNALID	string	Externalid des Verortungsobjektes
GNAME_ID	long	ID des zugewiesenen GIP Namens
GNAME_CAT	string	Namenskategorie des zugewiesenen GIP Namens, Bezeichnung aus LUT_NAMECATEGORY (keine Aufschlüsselung erforderlich)
GNAME_TEXT	string	Text des zugewiesenen GIP Namens
ROUTETYPE	string	ATT 1 "Radroutentyp", Bezeichnung aus LUT BIKEROUTE (keine Aufschlüsselung erdorderlich)
SUSTAINER	string	ATT 2 "Erhalter", Bezeichnung aus LUT SUSTAINER (keine Aufschlüsselung erforderlich)
EXTERNALLINK	string	ATT 3 Externallink
BIKECOMFORT	string	ATT 4 "Schwierigkeitsgrad", Bezeichnung aus LUT BIKECOMFORT (keine Aufschlüsselung erforderlich). Dieser Wert existiert nur für Mountainbike-, und Singletrail-Routen
ROUTESTATE	string	ATT 5 "Radroutenstatus", Bezeichnung aus LUT BIKEROUTESTATE (keine Aufschlüsselung erforderlich)
SIGNED	string	ATT 6 "Beschilderung", Bezeichnung aus LUT SIGNAGE (keine Aufschlüsselung erforderlich)
ERGTYPE	string	ATT 7 "Ergänzungstyp", Bezeichnung aus LUT MINORTYPEREF (keine Aufschlüsselung erforderlich)
ID_EUROVELO	string	ATT 8 "Teil einer Euro Velo Radroute" – ID der Eurovelo Route
NAME_EUROVELO	string	ATT 8 "Teil einer Euro Velo Radroute" – Name der Eurovelo Route
ID_AUSTRIANROUTE	string	ATT 9 "Teil einer Österreich Radroute" – ID der Österreich Radroute
NAME_AUSTRIANROUTE	string	ATT 9 "Teil einer Österreich Radroute" – Name der Österreich Radroute

5.4. Geopackage Layer "Geoname"

Der Layer Geoname enthält Namen mit Geobezug, die im GIP Export von Interesse sein können.

Initial werden sie mit ÖBB Bahnhöfen befüllt.

Spalte	Format	Beschreibung
OBJECTID (PK)	long	Eindeutige ID des Geonamens
NAMETEXT	string	Nametext
REGCODE		Regionalcode
ATT01	string	Nicht relevant
ATT02	string	Nicht relevant
ATT03	string	Nicht relevant
ATT04	string	Nicht relevant
ATT05	string	Nicht relevant
NAMECAT	integer	Namenskategorie, Wertedomäne laut der Tabelle LUT_NAMECATEGORY
OWNER_ID	integer	ID des Besitzers, Wertedomäne laut der Tabelle LUT_NAMECATEGORY

5.5. Geopackage Layer "Radvis"

Dieser Datensatz enthält die Radinfrastruktur als linearer Datensatz mit Attributen. Enthalten sind Infrastrukturen (z.B.: Geh- und Radweg), jedoch keine Radrouten (z.B.: Eurovelo).

Spalte	Format	Beschreibung
IDF_USE_ID	String	ID des GIP LinkUses
BIKE_TOW	String	Radinfrastruktur in Richtung (Wertedomäne laut Tabelle LUT_BIKEMERKMAL)
BIKE_BKW	String	Radinfrastruktur gegen Richtung (Wertedomäne laut Tabelle LUT_BIKEMERKMAL)
SURFACE	Integer	Straßenbelag (Wertedomäne laut Tabelle LUT_SURFACE)
GIP_LU_ID	Integer	ID des GIP Linearuses
LINK_ID	Integer	ID des GIP Links
OWNER_ID	Integer	Besitzer der Radinfrastruktur

5.6. Geopackage Layer "Max Speed"

Dieser Layer enthält die Maximalgeschwindigkeiten OHNE Mittelung auf die Links und somit in ihrer originalen Form. Er ist österreichweit NICHT vollständig.

Spaltenname	Format	Bedeutung
SHORT_ID	Integer	Eindeutige numerische ID
USECONDITION_ID	Integer (GIP 2.0:	ObjectID der GIP
	uuid)	Nutzungsbedingung
FEATURE_NAME	String	(Technische) Bezeichnung
USE_CONDITION_TYPE	Integer	Typ der GIP Nutzungsbedingung 3 = Höchstgeschwindigkeit 2002 = Wirkungsobjekt
VALUE	linto mon	Geschwindigkeit Wert der
VALUE	Integer	Geschwindigkeitsbeschränkung in km/h
DIRECTION	Integer	Richtung
		0 = gegen Richtung 1 = in Richtung
		2 = in beide Richtungen
VALIDITY_TERM	String	Textuelle Beschreibung der komplexen Gültigkeit, falls basierend auf STVO Maßnahme
DEFAULT_VALIDITY	Integer	Gültigkeit vereinfacht
DEFAULT_VALIDITY	шеде	1 = Motorisierter Straßenverkehr (LKW und PKW) 6 = PKW 9 = LKW
EDGE_ID	Integer (GIP 2.0: uuid)	ID des Abschnittes, auf dem die Nutzungsbedingung liegt
EDGE_PERCENTAGE_FROM	Float	Stationierung am Abschnitt START
EDGE_PERCENTAGE_TO	Float	Stationierung am Abschnitt ENDE
LINEAR_USE_ID	Integer (GIP 2.0: uuid)	ID des Nutzungsstreifens, auf dem die Nutzungsbedingung liegt
LINEAR_USE_BASE_TYPE	Integer	Typ des Nutzungsstreifens gemäß LUT_BASETYPE Beispiel: 1 = Fahrbahn
SHAPE	Geometry	Geometrie (auf die Mittelachse
		des Abschnitts projiziert)

5.7. Geopackage Layer "Version"

Der Layer VERSION enthält die aktuelle Version und das Datum des Geopackages.

6. Beschreibung des Datensatzes D – Lookuptabellen

LUT_BASETYPE

Enthält das Verzeichnis der möglichen Typen von Nutzungsstreifen und Abbiegerelationen.

LUT_BEPU_OCCURRENCE

Enthält die möglichen Ausprägungen des Feldes BEPU OCCURRENCE.

LUT_BEPU_TYPE

Enthält die möglichen Ausprägungen des Feldes BEPU TYPE

LUT_BIKEMERKMAL

Enthält Verzeichnis der möglichen Zusatzinformationen für Radverkehr ("Bikefeatures").

LUT_DATABASE

Enthält Verzeichnis der möglichen Ausprägungen des Attributes OWNER_ID, also der GIP Partner, in dessen Datenbank der Datensatz liegt.

LUT DIRECTION

Mögliche Richtungsausprägungen.

LUT_FRC

Enthält Verzeichnis der möglichen Ausprägungen der funktionalen Bedeutung eines Abschnittes.

LUT FOW

Enthält Verzeichnis der möglichen Ausprägungen der baulichen Struktur eines Abschnittes.

LUT_INTREST_BIT

Enthält Verzeichnis der möglichen Ausprägungen der IDF Befahrbarkeits Bits.

LUT MINORTYPE

Enthält Verzeichnis der möglichen Ausprägungen vom Attribut Ergänzungstyp.

LUT_MINORTYPEREF

Enthält Verzeichnis der möglichen Ausprägungen vom Attribut Ergänzungstyp bei Verortungsobjekten (Radrouten).

LUT NAMECATEGORY

Enthält Verzeichnis der möglichen Ausprägungen des Attributs Namecategory.

LUT NETREFTYPE

Kennzeichnet die möglichen Ausprägungen der Netzreferenzen.

LUT_REFERENCETYPE

Enthält Verzeichnis der möglichen Ausprägungen von Brücken und Tunnel.

LUT_REGIONALCODE

Enthält Verzeichnis der möglichen Ausprägungen des Attributs Regionalcode.

Historische Regionalcodes sind zur Entschlüsselung von historischen GIP Datenständen auch in der LUT_REGIONALCODE enthalten, allerdings im Namen mit zz_hist_ gekennzeichnet.

Beispiel Mariazell:

A ID	2 NAME	NAME_LONG	DESCRIPTION	MODIFY_TIMESTAMP
AT60210	zz_Mariazell_hist	(null)	(null)	25.05.16
AT62142	Mariazell	(null)	(null)	25.05.16

LUT_STATUS

Enthält Verzeichnis der möglichen Ausprägungen des Attributs Baustatus.

LUT_STREETCATEGORY

Enthält Verzeichnis der möglichen Abschnittskategorien.

LUT_SUBNET

Enthält Verzeichnis aller im Datensatz vorhandenen Subnetz-IDs.

LUT SURFACE

Enthält Verzeichnis der möglichen Ausprägungen des Attributs Belag.

LUT SUSTAINER

Enthält Verzeichnis der möglichen Ausprägungen des Attributs Erhalter.

LUT_TOPOTYPE

Enthält Verzeichnis der möglichen Ausprägungen der Klassen von Knoten.

LUT_USECONDITION

Enthält Nutzungsbedingungstypen für Detailausprägungen auf Nutzungsstreifen.

LUT_WALKFEATURE

Enthält Ausprägungen des Attributs WALKFEATURE.

7. Beschreibung des Datensatzes E- Localdata

Dieses Geopackage beinhaltet lokale Inhalte der GIP die sich ausschließlich auf ein oder mehrere Bundesländer, jedoch nicht auf ganz Österreich beziehen.

7.1. Geopackage Layer "Radstreckennetz_VBG"

Dieser Datensatz enthält das Radstreckennetz Vorarlberg als linearer Datensatz mit Attributen. Enthalten sind Infrastrukturen (z.B.: Geh- und Radweg), jedoch keine Radrouten (z.B.: Eurovelo).

Spalte	Format	Beschreibung
OBJECTID	long	ID der Route
VALIDFROM	Date	"Gültig ab" des Verortungsobjektes
OWNER_ID	Integer	Besitzer der Radstrecke
BEZEICHNUNG	String	Vollständiger Name der Radstrecke
BIKEROUTE	String	ATT1 Typ der Radstrecke (Wertedomäne laut Tabelle LUT_BIKEROUTE)
SUSTAINER	String	ATT 2 "Erhalter", (Wertedomäne laut Tabelle LUT_SUSTAINER)
MINORTYPE	String	ATT4 Ausprägungen der Radstrecke (Wertedomäne laut Tabelle LUT_ MINORTYPE)
VBG_LRRKATEGO	String	ATT6 Kategorie der Landesradroute Bezeichnung (Wertedomäne laut Tabelle LUT_VBG_LRRKATEGO)
VBG_LRRFUNKTION	String	ATT7 Funktion der Landesradroute (Wertedomäne laut Tabelle LUT_ VBG_LRRFUNKTION)
BIKEROUTESTATE	String	ATT8 Status der Radroute Bezeichnung (Wertedomäne laut Tabelle LUT_BIKEROUTESTATE)
WEGWEISUNG	Integer	Wegweisung
WEGWEISUNG2	Integer	Wegweisung2
Routenname2	Integer	Routenname2
VBG_RVA_ART	String	Wertedomäne laut Tabelle LUT_VBG_RVA_ART
VBG_RVA_RICHTUNG	String	Wertedomäne laut Tabelle LUT_VBG_RVA_RICHTUNG
SDE_ID	Integer	
SHAPE	SDO_GEOMETRY	

7.2. Geopackage Layer "Version"

Der Layer VERSION enthält die aktuelle Version und das Datum des Geopackages.